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A. W. Richter PREFACE

Preface

These notes are intended for a one-semester course in mathematical economics. The goal of this

course is to help prepare students for the mathematical rigor of graduate economics by providing a

balance between theory and application. There are dozens of examples throughout the notes, which

demonstrate many of the theoretical concepts and theorems. Below is a short list of the notation

used thoughout these notes.

Symbol Technical Description Translation

∀ universal qualification for all

∃ existential qualification there exists

∧ logical conjunction and

∨ logical disjunction or

⇒ material implication implies/if, then

⇔ material equivalence if and only if (iff)

≡ or := definition is defined as/is equivalent to

∈ set membership in/element of

| or : set restriction such that/given that

⊆ subset contained in

N natural numbers set of positive integers

Z set of all integers positive, negative or zero

Q set of all rational numbers set of all proper and improper fractions

R set of all real numbers all rational and irrational numbers

v



Chapter 1

Mathematical Preliminaries

1.1 Single-Variable Calculus

1.1.1 Limits of Functions

Definition 1.1.1 (Limit of a Function). Let f be a function defined on some open interval that

contains the number a, except possibly a itself. Then we say that the limit of f(x) as x approaches

a is L, and we write

lim
x→a

f(x) = L.

That is, if for every number ε > 0 there is a number δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ.

Less formally, if anytime x is near a, the function f is near L, then we say that the limit of

f(x) as x approaches a is L (see figure 1.1). Note that logically the statement “q whenever p”

is equivalent to “if p, then q”, where it is customary to refer to p as the hypothesis and q as the

conclusion. The related implication ∼ q ⇒∼ p is called the contrapositive.

Example 1.1.1. Using the definition of a limit, prove the following:

(a) limx→1(2x
2 − 3x+ 1)/(x − 1) = 1

Solution: Let ε > 0, suppose |x− 1| < δ, and choose δ = ε/2 > 0. Then

|f(x)− 1| =
∣

∣

∣

∣

2x2 − 3x+ 1

x− 1
− 1

∣

∣

∣

∣

= 2|x− 1| < 2δ = ε.

(b) limx→5 x
2 − 3x+ 1 = 11

Solution: Let ε > 0, suppose |x− 5| < δ, and choose δ = min{1, ε/8}. We can write

|f(x)− 11| = |x2 − 3x− 10| = |(x− 5)(x + 2)|.
To make this small, we need a bound on the size of x+2 when x is “close” to 5. For example,

if we arbitrarily require that |x− 5| < 1, then

|x+ 2| = |x− 5 + 7| ≤ |x− 5|+ 7 < 8.

To make f(x) within ε units of 11, we shall want to have |x + 2| < 8 and |x − 5| < ε/8.

Thus, under the above definition of δ

|f(x)− 11| = |(x− 5)(x + 2)| < 8δ ≤ ε.

1



A. W. Richter 1.1. SINGLE-VARIABLE CALCULUS

Figure 1.1: Definition of a Limit

f

L

L-ε

L+ε

a-δ a+δa

(c) limx→−2 x
2 + 2x+ 7 = 7

Solution: Let ε > 0, suppose |x+ 2| < δ, and choose δ = min{1, ε/3}. We can write

|f(x)− 7| = |x2 + 2x| = |x(x+ 2)|.

To make this small, we need a bound on the size of x when x is “close” to −2. For example,

if we arbitrarily require that |x+ 2| < 1, then

|x| − |2| ≤ |x+ 2| < 1,

since |a| − |b| ≤ ||a| − |b|| ≤ |a± b| by the triangle inequality. Thus, |x| < 3, which implies

|f(x)− 7| = |x(x+ 2)| < 3δ ≤ ε.

(d) limx→2 x
3 = 8

Solution: Let ε > 0, suppose |x− 2| < δ, and choose δ = min{1, ε
19}. Then

|f(x)− 8| = |x3 − 8| = |x− 2||x2 + 2x+ 4|
= |x− 2| · |(x− 2)2 + 6(x− 2) + 12|
< δ(δ2 + 6δ + 12)

≤ ε

19
(1 + 6 + 12)

= ε.

1.1.2 Definition of a derivative and Tangent Lines

The derivative of y with respect to x at a is, geometrically, the slope of the tangent line to the graph

of f at a. The slope of the tangent line is very close to the slope of the line through (a, f(a)) and

a nearby point on the graph, for example (a+ h, f(a+ h)). These lines are called secant lines.

Thus, a value of h close to zero will give a good approximation to the slope of the tangent line, and

smaller values (in absolute value) of h will, in general, give better approximations. The slope of the

secant line is the difference between the y values of these points divided by the difference between

the x values. The following definition provides the more customary definition of a derivative.

2



A. W. Richter 1.1. SINGLE-VARIABLE CALCULUS

Definition 1.1.2 (Derivative). The function f : R → R is differentiable at a if

m = f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

exists. This limit is called the derivative of f at a and is written f ′(a).

Definition 1.1.3 (Tangent Line). The tangent line to the curve y = f(x) at the point P (a, f(a)) is

the line through P with slope m, provided that the limit exists.

Remark 1.1.1. In general, when a function f of one variable is differentiable at a point a, the

equation of a tangent line to the graph of f at a is:

y = f(a) + f ′(a)(x− a)

Example 1.1.2. Find an equation of the tangent line to the hyperbola y = 3/x at the point (3, 1)
using the above definition of a derivative.

Solution: The slope is given by

m = lim
h→0

f(3 + h)− f(3)

h
= lim

h→0

3
3+h − 1

h

= lim
h→0

− 1

3 + h
= −1

3
.

Therefore, an equation of the tangent line at the point (3, 1) is

y = 1− (x− 3)/3 → x+ 3y − 6 = 0.

Example 1.1.3. Find an equation of the tangent line to the curve y = (x− 1)/(x − 2) at the point

(3, 2) using the above definition of a derivative.

Solution: The slope is given by

m = lim
h→0

f(3 + h)− f(3)

h
= lim

h→0

h+2
h+1 − 2

h

= lim
h→0

− 1

h+ 1
= −1.

Therefore, an equation of the tangent line at the point (3, 2) is

y − 2 = −(x− 3) → x+ y = 5.

1.1.3 Properties of the Differential

Theorem 1.1.1 (Classic properties). Let I be an interval in R and suppose that f : I → R and

g : I → R are differentiable at a ∈ I . Then

(i) If k ∈ R, then the function kf is differentiable at a and

(kf)′(a) = k · f ′(a)

(ii) The function f + g is differentiable at a and

(f + g)′(a) = f ′(a) + g′(a)

3



A. W. Richter 1.1. SINGLE-VARIABLE CALCULUS

(iii) (Product Rule) The function fg is differentiable at a and

(fg)′(a) = f(a)g′(a) + g(a)f ′(a)

(iv) (Quotient Rule) If g(a) 6= 0, then f/g is differentiable at a and

(

f

g

)′
(a) =

g(a)f ′(a)− f(a)g′(a)
[g(a)]2

.

Theorem 1.1.2 (Chain Rule). Let I and J be intervals in R, f : I → R, and g : J → R, where

f(I) ⊆ J , and let a ∈ I . If f is differentiable at a and g is differentiable at f(a), then the composite

function g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) · f ′(a).

Example 1.1.4. Using the properties of the differential, differentiate the following, where a, p, q,

and b are constants

(a) y = f(x) = 1
(x2+x+1)5

Solution: f ′(x) = −5(2x+1)
(x2+x+1)6

(b) y = f(x) =

√

1 +
√

1 +
√
x

Solution: f ′(x) = 1/(8y
√

x(1 +
√
x))

(c) y = f(x) = xa(px+ q)b

Solution: f ′(x) = y[bp/(px+ q) + a/x]

Example 1.1.5. If a(t) and b(t) are positive-valued differentiable functions of t, and if A, α, β are

constants, find expressions for ẋ
x = dx/dt

x , where

(a) x = A
{

[a(t)]α + [b(t)]β
}α+β

Solution: ẋ
x = (α+β)(αa(t)α−1 ȧ+β(t)β−1 ḃ)

[a(t)]α+[b(t)]β

(b) x = A[a(t)]α[b(t)]β

Solution: ẋ
x = βḃ

b(t) +
αȧ
a(t)

Example 1.1.6. If F (x) = f(xng(x)), find a formula for F ′(x).
Solution: F ′(x) = f ′(xng(x))(xng′(x) + g(x)nxn−1)

Theorem 1.1.3 (L’Hospital’s Rule). Suppose f and g are differentiable and g′(x) 6= 0 near a

(expect possibly at a). Suppose that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

or that lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞.

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)
g′(x)

if the limit on the right side exists.

4



A. W. Richter 1.1. SINGLE-VARIABLE CALCULUS

Example 1.1.7. Calculate limx→∞
lnx
3
√
x

.

Solution:

lim
x→∞

lnx
3
√
x

= lim
x→∞

1/x

x−2/3/3
= lim

x→∞
3
3
√
x
= 0.

Example 1.1.8. Calculate limx→∞ ex/x2.

Solution:

lim
x→∞

ex/x2 = lim
x→∞

ex/2x = lim
x→∞

ex/2 = ∞.

Theorem 1.1.4 (Inverse Function Theorem). Suppose that f is differentiable on an interval I and

f ′(x) 6= 0 (no local maxima or minima) for all x ∈ I . Then f is injective, f−1 is differentiable on

f(I), and
∂x

∂y
= (f−1)′(y) =

1

f ′(x)
=

1

∂y/∂x
,

where y = f(x).

Example 1.1.9. Let n ∈ N and y = f(x) = x1/n for x > 0. Then f is the inverse of the

function g(y) = yn. Use Theorem 1.1.4 to verify the familiar derivative formula for f : f ′(x) =
(1/n)x1/n−1.

Solution:

f ′(x) =
1

(f−1)′(y)
=

1

g′(y)
=

1

nyn−1
=

1

n(x1/n)n−1
=

1

n
x1/n−1.

Example 1.1.10. Consider the following function:

y = f(θ) = − θ

(1− θ) log(1− θ)
.

Use Theorem 1.1.4, find df−1(y)/dy.

Solution:

df−1(y)

dy
=

dθ

dy
=

1

dy/dθ
= − 1

[

log(1−θ)+θ

(1−θ)2 log2(1−θ)

] = −(1− θ)2 log2(1− θ)

log(1− θ) + θ
.

1.1.4 Single-Variable Maximization

Proposition 1.1.1 (First Derivative Test). Suppose c is a critical point of a continuous function f .

(a) If f ′ changes from positive to negative at c, then f has a local maximum at c.

(b) If f ′ changes from negative to positive at c, then f has a local minimum at c.

(c) If f ′ does not change sign at c, then f has no local maximum or minimum at c.

If the sign of f ′(x) changes from positive to negative (negative to positive) at c, f is increasing

(decreasing) to the left of c and decreasing (increasing) to the right of c. If follows that f has a local

maximum (minimum) at c.

Proposition 1.1.2 (Second Derivative Test). Suppose f ′′ is continuous near c.

(a) If f ′(c) = 0 and f ′′(c) > 0, then f has local minimum at c.

5



A. W. Richter 1.1. SINGLE-VARIABLE CALCULUS

(b) If f ′(c) = 0 and f ′′(c) < 0, then f has local maximum at c.

If f ′′(c) > 0(< 0) near c, f is concave upward (downward) near c. Thus, the graph of f lies

above (below) its horizonal tangent at c and so f has a local minimum (maximum) at c.

Example 1.1.11. The height of a plant after t months is given by h(t) =
√
t − t/2, t ∈ [0, 3]. At

what time is the plant at its highest?

Solution: The first order condition is given by

h′(t) =
1

2
√
t
− 1

2

set
= 0 ⇒ t∗ = 1,

where h(1) = 1 − 1/2 = 1/2. Since h′′(t) = −1/(4t3/2) < 0, t∗ = 1 is a local maximum. Also,

h(0) = 0, h(3) =
√
3− 3/2 ≈ 0.27. Therefore, t∗ = 1 is an absolute maximum.

Example 1.1.12. A sports club plans to charter a plane. The charge for 60 passengers is $800 each.

For each additional person above 60, all travelers get a discount of $10. The plane can take at most

80 passengers.

(a) If 60 + x passengers fly, what is the total cost?

Solution: TC(x) = ($800 − $10x)(60 + x)

(b) Find the number of passengers that maximizes the total airfare paid by the club members.

Solution: TC ′(x) = 200−20x and TC ′′(x) = −20. Thus, x∗ = 10 and airfare expenditures

are maximized with 70 passengers (TC(x∗) = $49, 000).

Example 1.1.13. Let C(Q) be the total cost function for a firm producing Q units of some com-

modity. A(Q) = C(Q)/Q is then called the average cost function. If C(Q) is differentiable, prove

that A(Q) has a stationary point (critical point) at Q0 > 0 if and only if the marginal cost and the

average cost functions are equal at Q0. (C ′(Q0) = A(Q0))
Solution: By definition, QA(Q) = C(Q). Differentiating with respect to Q yields

QA′(Q) +A(Q) = C ′(Q).

Assume A(Q) has a stationary point at Q0 > 0. Then it is easy to see that A(Q0) = C ′(Q0) as

desired. Now assume A(Q0) = C ′(Q0). Then Q0A
′(Q0) = 0, which implies that A′(Q0) = 0 as

desired since Q0 > 0.

Example 1.1.14. With reference to the previous example, let C(Q) = aQ3+ bQ2+ cQ+ d, where

a > 0, b ≥ 0, c > 0, and d > 0. Prove that A(Q) = C(Q)/Q has a minimum in the interval (0,∞).
Then let b = 0 and find the minimum point in this case.

Solution: The average cost function is given by

A(Q) =
C(Q)

Q
= aQ2 + bQ+ c+

d

Q
.

Differentiating with respect to Q yields

A′(Q) = 2aQ+ b− d

Q2

set
= 0.

6
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Figure 1.2: Intermediate Value Theorem

f

N

a bc

f(a)

f(b)

Given the restrictions on the constants, as Q → 0, A′(Q) < 0 and as Q → ∞, A′(Q) > 0. Thus,

there exists a Q∗ ∈ (0,∞) that satisfies the first order condition. To determine whether this critical

point is a minimum or maximum, differentiate A′(Q) with respect to Q to obtain

A′′(Q) = 2(a+ d/Q3) > 0,

given the restrictions on the parameters. Thus, A(Q) has a minimum in the interval (0,∞) by the

second derivative test. When b = 0

d

(Q∗)2
= 2aQ∗ → Q∗ =

(

d

2a

)1/3

.

1.1.5 Intermediate and Mean Value Theorems

Definition 1.1.4 (Intermediate Value Theorem). Suppose that f is continuous on the closed interval

[a, b] and let N be any number between f(a) and f(b), where f(a) 6= f(b). Then there exists a

number c in (a, b) such that f(c) = N .

Simply put, the Intermediate Value Theorem says the graph of f must cross any horizontal line

between y = f(a) and y = f(b) at one or more points in [a, b] (see figure 1.2).

Example 1.1.15. Show that 2x = 3x for some x ∈ (0, 1).
Solution: Define f(x) = 2x−3x. Then f is continuous on [0, 1] and f(0) = 1 and f(1) = −1.

Thus, by the Intermediate Value Theorem ∃ x0 ∈ (0, 1) such that f(x0) = 0.

Theorem 1.1.5 (Rolle’s Theorem). Let f be a continuous function on [a, b] that is differentiable on

(a, b) such that f(a) = f(b) = 0. Then there exists at least one point c ∈ (a, b) such that f ′(c) = 0.

The geometric interpretation of Rolle’s theorem is that, if the graph of a differentiable function

touches the x-axis at arbitrary points a and b, where b > a, then for some point c between a and b
there is a horizontal tangent (see figure 1.3a). If we allow the function to have different values at

the endpoints, then we cannot be assured of a horizontal tangent, but there will be a point c ∈ (a, b)
such that the tangent to the graph at x = c will be parallel to the chord between the endpoints of the

graph. This is the essence of the Mean Value Theorem (see figure 1.3b).

7
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Figure 1.3: Rolle’s Theorem and Mean Value Theorem

a bc
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(a) Rolle’s Theorem

bc
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tangent at c
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(b) Mean Value Theorem

Theorem 1.1.6 (Mean Value Theorem). Let f be a continuous function on [a, b] that is differentiable

on (a, b). Then there exists at least one point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Example 1.1.16. As a illustration of one use of the Mean Value Theorem (MVT), we will derive

Bernoulli’s inequality: for x > 0

(1 + x)n ≥ 1 + nx ∀n ∈ N.

Solution: Let f(t) = (1 + t)n on the interval [0, x], which is clearly continuous and differen-

tiable. Then, by the MVT, there exists a c ∈ (0, x) such that

f(x)− f(0) = f ′(c)(x − 0).

Thus, we have

(1 + x)n − 1 = nx(1 + c)n−1 ≥ nx,

since f ′(c) = n(1 + c)n−1, 1 + c > 1, and n− 1 ≥ 0.

Example 1.1.17. Use the Mean Value Theorem (MVT) to establish the following inequalities, as-

suming any relevant derivative formulas.

(a) ex > 1 + x for x > 0

Solution: Define f(x) = ex and recall from the MVT that f(b) − f(a) = f ′(c)(b − a) for

some c ∈ (0, x). Then

ex − 1 = ec(x− 0) = ecx > x

since ec > 1 for c > 0.

8
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(b) 1
8 <

√
51 − 7 < 1

7

Solution: Define f(x) =
√
x and consider the interval [49, 51]. Then by the MVT, ∃c ∈

(49, 51) such that √
51−

√
49

51− 49
= f ′(c) =

1

2
√
c
.

Consequently, we have
1√
c
=

√
51− 7,

which implies
1

8
=

1√
64

<
1√
51

<
1√
c
=

√
51− 7 <

1√
49

=
1

7
.

(c)
√
1 + x < 5 + x−24

10 for x > 24

Solution: Define f(x) =
√
1 + x and consider the interval [24, x]. Then by the MVT, ∃c ∈

(24, x) such that

f(x)− f(24) =
√
1 + x− 5 = f ′(c)(x − 24) =

x− 24

2
√
1 + c

<
x− 24

10
,

since c > 24,
√
1 + c >

√
25 = 5.

1.1.6 Taylor Approximations

Definition 1.1.5 (Taylor’s Theorem). Let f and its first n derivatives be continuous on [a, b] and

differentiable on (a, b), and let x0 ∈ [a, b]. Then for each x ∈ [a, b] with x 6= x0, there exists a point

c between x and x0 such that

f(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)

2+· · ·+f (n)(x0)

n!
(x−x0)

n+
f (n+1)(c)

(n+ 1)!
(x−x0)

n+1.

Taylor’s theorem can be viewed as an extension of the MVT in the sense that taking x = b,
x0 = a, and n = 0 in Taylor’s theorem yields the earlier result.

Example 1.1.18. As an illustration of the usefulness of Taylor’s theorem in approximations, con-

sider f(x) = ex for x ∈ R. To find the nth Taylor polynomial for f at x0 = 0, recall that

f (n)(x) = ex for all n ∈ N. Thus, we have

pn(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
.

To find the error involved in approximating ex by pn(x), we use the remainder term given by Tay-

lor’s theorem. That is,

Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 =

ecxn+1

(n+ 1)!
,

where c is some number between 0 and x. For example, suppose that we take n = 5 and compute

the error when x ∈ [−1, 1]. Since c is also in [−1, 1], a simple calculation shows that |R5(x)| ≤
e/6! < 0.0038. Thus, for all x ∈ [−1, 1], the polynomial

1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!

differs from ex by less than 0.0038.

9
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Remark 1.1.2. For the special case x0 = 0, the Taylor Series is known as a Maclaurin series.

Example 1.1.19. Find an approximation to the following function about the given point

f(x) = (1 + x)5, a = 0.

Solution: Applying the above formula

f(x) ≈
[

(1 + a)5 +
5(1 + a)4

1!
(x− a) +

20(1 + a)3

2!
(x− a)2 +

60(1 + a)2

3!
(x− a)3+

120(1 + a)

4!
(x− a)4 +

120

5!
(x− a)5

]∣

∣

∣

∣

a=0

= 1 + 5x+ 10x2 + 10x3 + 5x4 + x5.

Example 1.1.20. Find quadratic approximations to the following functions about the given points:

(a) F (K) = AKα, K0 = 1

Solution: F (K) ≈ A[1 + α(K − 1) + α(α − 1)(K − 1)2/2]

(b) f(ε) =
(

1 + 3
2ε+

1
2ε

2
)1/2

, ε0 = 0

Solution: f(ε) ≈ 1 + 3
4ε− 1

32ε
2

(c) H(x) = (1 + x)−1, x0 = 0

Solution: H(x) ≈ 1− x+ x2

1.1.7 Laws of Logarithms

Consider a function, f with domain A and range B. If a > 0 and a 6= 1, the exponential function

f(x) = ax is either increasing or decreasing, and thus injective. It therefore has an inverse function

f−1, which is called the logarithmic function with base a and is denoted loga. According to the

definition of an inverse function,

f−1(x) = y ⇐⇒ ay = x.

Thus, we have

loga x = y ⇐⇒ ay = x.

Moreover, since

f−1(f(x)) = x for every x in A

f(f−1(x)) = x for every x in B

it is the case that

loga(a
x) = x for every x ∈ R

aloga x = x for every x > 0.

The key properties of logarithmic functions are as follows:

(a) loga(xy) = loga x+ loga y

(b) loga(x/y) = loga x− loga y

(c) loga x
r = r loga x (where r is a real number)

10
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Natural Logarithms

The mathematical constant, e, is the unique real number such that the value of the derivative (the

slope of the tangent line) of the exponential function f(x) = ax at the point x = 0 is exactly 1. The

logarithm with base e is called the natural logarithm and has a special notation

loge x ≡ lnx.

Thus, the above properties generalize to

lnx = y ⇐⇒ ey = x

ln(ex) = x for every x ∈ R

elnx = x for every x > 0

In particular, if we set x = 1, we get

ln e = 1.

Finally, when y = loga x, we have ay = x. Thus, applying the natural logarithm to both sides of

this equation, we get y ln a = lnx. Thus, the change of base formula is given by

y = loga x =
lnx

ln a
.

Example 1.1.21. Express ln a+ 1
2 ln b as a single logarithm.

Solution: ln a+ 1
2 ln b = ln a+ ln b1/2 = ln(a

√
b)

Example 1.1.22. Find the inverse function of the following: m = f(t) = 24 · 2−t/25.

Solution: m
24 = 2−t/25 ⇒ lnm− ln 24 = − t

25 ln 2 ⇒ t = f−1(m) = 25
ln 2(ln 24− lnm)

Example 1.1.23. If f(x) = 2x+ lnx, find f−1(2)
Solution: Define y = f(x). Then f−1(y) = x. Thus, at y = 2, we have 2x+ln x = 2 ⇒ x = 1.

It immediately follows that f−1(2) = 1

Example 1.1.24. Calculate limx→∞(1 + 1/x)x.

Solution: Define y = (1 + 1/x)x. Then ln y = x ln(1 + 1/x). We must first evaluate the limit

of the right-hand-side as x → ∞. Using L’Hospital’s Rule, we obtain

lim
x→∞

x ln(1 + 1/x) = lim
x→∞

ln(1 + 1/x)

1/x
= lim

x→∞
1

1 + 1/x
= 1.

Thus, ln y → 1 as x → ∞. Since ex is a continuous function, we have y = eln y → e as x → ∞.

Example 1.1.25. Find a linear approximation to the following function about the given point:

xt = x̄eln (xt/x̄) = x̄elnxt−ln x̄ ≡ x̄ex̂t = f(x̂t), a = x̂ = 0,

where x̄ is the stationary value of xt. Then show that percent changes are a good approximation for

log deviations.

Solution:

xt ≈ f(0) + f ′(0)(x̂t − 0)

= x̄e0 + x̄e0(x̂t − 0)

= x̄[1 + x̂t]

11
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Figure 1.4: Log-Linear Approximation
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which implies that

x̂t ≡ lnxt − ln x̄ ≈ xt − x̄

x̄
.

Since the above result is a first order approximation it includes an error term. xt/x̄ is interpreted

as a gross deviation of an observation, xt, from its stationary value (a value near one). Log lineariza-

tion approximates the percent change, or the net deviation from the stationary value (a value near

zero). We can see in the following graph that the approximation becomes less accurate as xt/x̄
moves away from one. For example, suppose xt/x̄ = 1.5, a gross deviation of 150% (net deviation

of 50%). Log linearization yields a net deviation of 40.55%. Thus, the approximation has an error

of nearly 10 percentage points. Figure 1.4 illustrates that the approximation attains more accurate

results when each observation is within a short distance of its stationary value.

1.1.8 Infinite Series

If we add the terms of an infinite sequence {an}∞n=1 we get an expression of the form

a1 + a2 + a3 + · · · + an + · · · ,

which is called an infinite series (or just a series) and is denoted by

∞
∑

n=1

an.

12
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The logical question is whether it makes sense to talk about the sum of infinitely many terms? It

would be impossible to find a finite sum for the series

1 + 2 + 3 + 4 + · · ·+ n+ · · ·

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, . . . and after the nth

term, we get n(n+ 1)/2, which becomes very large as n increases. However, if we start to add the

terms of the series

1

2
+

1

4
+

1

8
+

1

16
+ · · · + 1

2n
+ · · ·

we get 1
2 ,

3
4 ,

7
8 ,

15
16 ,

31
32 , . . . , 1 − 1/2n, . . ., which become closer and closer to 1. Using this idea, we

can define a new sequence {sn} of partial sums given by

sn =

n
∑

k=1

ak = a1 + a2 + · · · + an.

If {sn} converges to a real number s, we say that the series is convergent and we write

∞
∑

n=1

an = s.

We also refer to s as the sum of the series
∑∞

n=1 an. A series that is not convergent is called

divergent. If lim sn = +∞, we say that the series
∑∞

n=1 an diverges to +∞ and we write
∑∞

n=1 an = +∞.

Example 1.1.26. For the infinite series
∑∞

n=1 1/[n(n + 1)], we have the partial sums given by

sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n(n+ 1)

=

(

1

1
− 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · ·+
(

1

n
− 1

n+ 1

)

= 1− 1

n+ 1
.

This is an example of a telescoping series, so called because of the way in which the terms in the

partial sums cancel. Since the sequence of partial sums converges to 1 for n large, we have

∞
∑

n=1

1

n(n+ 1)
= 1.

Example 1.1.27. Show that the harmonic series, given by,

∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

is divergent.

Solution: The partial sums are given by

s1 = 1

13
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s2 = 1 +
1

2

s4 = 1 +
1

2
+

(

1

3
+

1

4

)

> 1 +
1

2
+

(

1

4
+

1

4

)

= 1 +
2

2

s8 = 1 +
1

2
+

(

1

3
+

1

4

)

+

(

1

5
+

1

6
+

1

7
+

1

8

)

> 1 +
1

2
+

(

1

4
+

1

4

)

+

(

1

8
+

1

8
+

1

8
+

1

8

)

= 1 +
1

2
+

1

2
+

1

2
= 1 +

3

2

Similarly, s16 > 1 + 4
2 , s32 > 1 + 5

2 , and in general

s2n > 1 +
n

2
.

This shows s2n → ∞ as n → ∞ and so {sn} is divergent. Therefore the harmonic series diverges.

Theorem 1.1.7. If
∑∞

n=1 an is a convergent series, then limn→∞ an = 0.

Proof. If
∑∞

n=1 an converges, then the sequence of partial sums {sn} must have a finite limit. But

an = sn − sn−1, so limn→∞ an = limn→∞ sn − limn→∞ sn−1 = 0.

Remark 1.1.3. The converse of Theorem 1.1.7 is not true in general. If limn→∞ an = 0, we

cannot conclude that
∑∞

n=1 an converges. Observe that for the harmonic series
∑∞

n=1
1
n we have

an = 1/n → 0 as n → ∞, but we showed in 1.1.27 that
∑∞

n=1
1
n is divergent.

Remark 1.1.4 (Test for Divergence). The contrapositive of Theorem 1.1.7, however, provides a

useful test for divergence. If limn→∞ an does not exist or if limn→∞ an 6= 0, then the series
∑∞

n=1 an is divergent.

Example 1.1.28. One of the most useful series in economics is the geometric series,

a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞
∑

n=1

arn−1.

Each term is obtained from the preceding one by multiplying it by the common ratio r. If r = 1,

then sn = na → ±∞. Since the limn→∞ sn does not exist, the geometric series diverges in this

case. If r 6= 1, we have

sn = a+ ar + ar2 + ar3 + · · ·+ arn−1

and rsn = ar + ar2 + ar3 + · · ·+ arn−1 + arn.

Subtracting these equations, we obtain

sn − rsn = a− arn,

which implies

sn =
a(1− rn)

1− r
.

If −1 < r < 1, then rn → 0 as n → ∞. Thus

lim
n→∞

sn = lim
n→∞

a(1− rn)

1− r
=

a

1− r
.

so a convergent geometric series equals the first term divided by one minus the common ratio.

14
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Example 1.1.29. In the previous example, we found that for |r| < 1

∞
∑

n=1

arn−1 =

∞
∑

n=0

arn =
a

1− r
.

Differentiating the above equation gives

∞
∑

n=1

anrn−1 =
a

(1− r)2
.

This result is particularly useful for deriving a closed solution for the expected value of a discrete

geometric random variable.

Example 1.1.30. Find the sum of each series

1.
∑∞

n=1

(

1
3

)n

Solution:
∑∞

n=1

(

1
3

)n
= 1/3

1−(1/3) =
1
2

2.
∑∞

n=3

(

1
2

)n

Solution:
∑∞

n=3

(

1
2

)n
= 1/8

1−(1/2) =
1
4

1.2 Multivariate Calculus

1.2.1 Level Surfaces

Even though many graphs have a three-dimensional representation, they are often drawn only in two

dimensions for simplicity. The information about elevation can be captured by drawing in a set of

contour lines, with each contour line representing all points with a specific elevation. The contour

lines are not graphs of the function but are instead what are called level curves (level surfaces in

higher dimensions). Level curves are so commonly used in economics that they often have special

names. An indifference curve for a consumer is a level curve containing all bundles of goods that

attain a certain level of utility. An isoquant in production theory is a level curve containing all

bundles of inputs that attain a certain output level.

To see the difference between the graph of a function and the graph of a level curve, consider

the function z = f(x, y) = 25 − x2 − y2. To find a level curve corresponding to z = 16, we take

a plane at height 16 and intersect it with the graph and then project the intersection down to the x-y
plane. A level curve is always in a figure with dimension one less than the graph (a two-dimensional

plane versus three-dimensional space). More formally, we have the following definition.

Definition 1.2.1. The graph of f : Rn → R1 is the set of points in Rn+1 given by {x, f(x)|x ∈ Rn}.

The level surface corresponds to f ≡ c (for some c ∈ R) is {x ∈ Rn|f(x) = c}.

1.2.2 Projections

Definition 1.2.2 (Scalar Product). For x,y ∈ Rn, the scalar product (or dot product) of x and y is

x · y :=
∑n

i=1 xiyi.

Definition 1.2.3 (Orthogonal Vectors). For x,y ∈ Rn, x and y are orthogonal if x · y = 0.

Definition 1.2.4 (Vector Length). For x ∈ Rn, the length (or norm) of x is ‖x‖ :=
√
x · x.

Theorem 1.2.1. If θ is the angle between vectors x and y, then

x · y = ‖x‖‖y‖ cos θ.
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Figure 1.5: Projection of x onto y

x

yty

x - ty

Definition 1.2.5 (Projections).

• Scalar Projection of x onto y: compyx = x·y
‖y‖

• Vector Projection of x onto y: proj
y
x = x·y

‖y‖2y

In order to see these formulas more clearly, note that cos θ = ‖ty‖/‖x‖. Thus,

‖ty‖ = ‖x‖ cos θ =
‖x‖‖y‖ cos θ

‖y‖ =
x · y
‖y‖ ,

which is the formula for the scalar projection of x onto y. Moreover, using the fact that ty =
‖ty‖y/‖y‖, simple algebra yields the vector projection of x onto y.

For t = (x · y)/‖y‖2, (x − ty) · y = 0 (See figure 1.5). Thus, we can decompose x into two

parts, one a multiple of y, ty, and the other orthogonal to y, x− ty.

Given a vector y, which vector x with norm c > 0 maximizes x · y? The set of vectors with

‖x‖ = c consists of all those vectors with heads on the “sphere” (could be a higher dimension) with

radius c. To simplify the problem assume ‖y‖ = 1. For any x, if the projection of x on y is ty, then

proj
y
x ≡ ty =

x · y
‖y‖2y.

Thus equating coefficients, we obtain x · y = t‖y‖2 = t. Since x · y = ‖x‖‖y‖ cos θ, x · y is

maximized when either ‖x‖ or ‖y‖ can be increased or when the angle θ between the two vectors

is minimized so that cos(θ) → 1, which implies the projection ty is maximized. Thus, to maximize

x ·y we must make the projection on y as large as possible subject to ‖x‖ = c. By the Pythagorean

theorem, ‖x‖2 = ‖ty‖2 + ‖x − ty‖2. But ‖x‖2 = c2 and ‖ty‖2 = t2‖y‖2 = t2 so, rearranging,

t2 = c2 − ‖x− ty‖2. Since the last term is nonnegative, t ≤ c. To make t as large as possible, set

x− ty = 0, so t = c. Thus to maximize x ·y subject to ‖x‖ = c, set x = cy. [If ‖y‖ 6= 1, we must

adjust the solution to x = (c/‖y‖)y.] Intuitively, we obtain the result that in order to maximize the

dot product between x and y, both vectors must point in the same direction.

1.2.3 Gradient Vector and its Relationship to the Level Surface

For a function f , consider the level surface S given by f(x1, x2, . . . , xn) = k through a point

P (x1,0, x2,0, . . . , xn,0). Let C be any curve that lies on the surface S and passes through the point

P , where the curve is described by a continuous vector function, r(t) = 〈x1(t), x2(t), . . . , xn(t)〉.
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Figure 1.6: Gradient Vector Perpendicular to the Level Curve

Level Curve

x

y

Let t0 be the parameter value corresponding to P ; that is r(t0) = 〈x1,0, x2,0, . . . , xn,0〉. Since C
lies on S, any point (x1(t), x2(t), . . . , xn(t)) must satisfy

f(x1(t), x2(t), . . . , xn(t)) = k.

By the Chain Rule, its total derivative is

∂f

∂x1

dx1
dt

+
∂f

∂x2

dx2
dt

+ · · · + ∂f

∂xn

dxn
dt

= ∇f · r′(t) = 0.

Since ∇f = 〈fx1
, fx2

, . . . , fxn〉 and r′(t) = 〈x′1(t), x′2(t), . . . , x′n(t)〉, at t = t0 the above condition

can be written

∇f(x1,0, x2,0, . . . , xn,0) · r′(t0) = 0.

Thus, the gradient vector at P , ∇f(x1,0, x2,0, . . . , xn,0), is perpendicular to the tangent vector r′(t)
to any curve C on S that passes through P . To illustrate, consider a function f of two variables and

a point P (x0, y0) in its domain. The gradient vector ∇f(x0, y0) gives the direction of the fastest

increase of f and is perpendicular to the level curve f(x, y) = k that passes through P . This makes

intuitive sense since the values of f remain constant as we move along the curve.

1.2.4 Gradients and Tangent Planes

Proposition 1.2.1. Assume that f : Rn → R1 is differentiable at a with gradient vector ∇f(a).
The following properties are consequences of differentiability:

(i) f is continuous at a.

(ii) For all unit vectors, u, the directional derivative in the direction of u is fu(a) = ∇f(a) · u.

(iii) For all i the ith component of ∇f(a) is
∂f(a)
∂xi

.

17
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(iv) The equation of the tangent plane to the graph of f at (a, f(a)) is given by

f(x)− f(a) = ∇f(a) · (x− a).

Note the similarity to the single-variable case.

(v) The equation of the tangent plane to the level curve corresponding to f(x) ≡ f(a) at the

point a is given by

0 = ∇f(a) · (x− a).

(vi) The marginal rate of substitution of xi for xj along the level curve corresponding to f(x) ≡
f(a) at the point a is the number of units of xj , which must be removed in order to maintain

a constant “output” f when a unit of xi is added and all other “inputs” are unchanged. The

change in input j (i) is vj (vi) and all other inputs are unchanged, so vk = 0 for k 6= i, j.

More formally we have

0 =
∂f

∂xi
(a)vi +

∂f

∂xj
(a)vj or

∂xj
∂xi

∣

∣

∣

∣x=a

f(x)≡f(a)

=
vj
vi

= −
∂f(a)
∂xi

∂f(a)
∂xj

.

(vii) The direction of change of inputs x which most increases output f(x) starting at a is the

direction ∇f(a).

Example 1.2.1. u(x, y, z) = x+ y + z2 is differentiable at (1, 1, 1).

(a) To find ∇u(1, 1, 1), ∇u(x, y, z) =





1
1
2z



, so ∇u(1, 1, 1) =





1
1
2



.

(b) To find the equation of the tangent plane to the graph of u at (1, 1, 1), u(1, 1, 1) = 3, so

(

u(x, y, z) − 3
)

= ∇u(1, 1, 1) ·





x− 1
y − 1
z − 1



 = (x− 1) + (y − 1) + 2(z − 1).

(c) The equation of the tangent plane to the level curve corresponding to u ≡ 3 at (1, 1, 1) is

0 = ∇u(1, 1, 1) ·





x− 1
y − 1
z − 1



 = (x− 1) + (y − 1) + 2(z − 1).

(d) To find the marginal rate of substitution of x for z along the level curve u ≡ 3 at the point

(1, 1, 1),

0 =
∂u

∂x
(1, 1, 1)∆x +

∂u

∂z
(1, 1, 1)∆z

so

∂z

∂x

∣

∣

∣

∣(x,y,z)=(1,1,1)
u=3

= −
∂u(1,1,1)

∂x
∂u(1,1,1)

∂z

= −1

2
.
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(e) To find the direction of change of inputs which yields the largest increase in output u at

(1, 1, 1), the direction is

1

‖∇u(1, 1, 1)‖∇u(1, 1, 1) =
1√
6





1
1
2



 ,

assuming the magnitude of the total change in inputs is unity.

Example 1.2.2. Output, Y , is produced using two inputs, K and L, according to Y = f(K,L) =
1 + (KL− 1)1/3.

(a) What is the equation of the tangent plane to the production surface at the point corresponding

to K = 1 and L = 2?

Solution:

Y = f(1, 2) +∇f(1, 2) ·
(

K − 1
L− 2

)

= 2 +
2

3
(K − 1) +

1

3
(L− 2)

or, equivalently, Y = 2
3K + 1

3L+ 2
3 .

(b) What is the equation of the tangent plane to the isoquant (level curve) corresponding to Y = 3
at (K,L) = (1, 9)?

Solution:

3 = 3 +∇f(1, 9) ·
(

K − 1
L− 9

)

→ 0 =
3

4
(K − 1) +

1

12
(L− 9)

or, equivalently, 9K + L = 18.

(c) What is the Marginal Rate of Substitution (MRS) of L for K along the isoquant corresponding

to Y = f(2, 1) at (K,L) = (2, 1)?

Solution: The Equation of the tangent plane to the level curve at (K,L) = (2, 1) is

0 = (∆K,∆L) · (fK(2, 1), fL(2, 1)) = (∆K,∆L) · (1
3
,
2

3
),

which implies that MRS = ∆K/∆L = −2.

(d) If starting at (K,L) = (2, 1), a tiny (marginal) amount of inputs could be added in any

proportions with ||(∆K,∆L)|| = ε, how many extra units of L should be added for each

additional unit of K to maximize the increase in output (i.e., what is the ratio ∆L/∆K)?

Solution: Equation of the tangent plane to the production surface at (2, 1) is

Y − f(2, 1) = (∆K,∆L) · (1
3
,
2

3
).

An increase in output is maximized when the scalar product of (∆K,∆L) and ∇f(2, 1) is

maximized. Thus,

(∆K,∆L) =
ε

‖1
3 ,

2
3‖

(
1

3
,
2

3
) =

(

ε√
5
,
2ε√
5

)

→ ∆L

∆K
= 2.
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Example 1.2.3. A firm uses capital, K, and labor, L, to produce output, Y , according to Y =
KαLβ , where α and β are positive constants.

(a) What is the equation of the isoquant corresponding to a level of output equal to one?

Solution: When Y = 1, the corresponding level curve is KαLβ = 1.

(b) What is the equation of the tangent plane to the production surface at K = L = 1?

Solution:

Y = Y (1, 1) +
∂Y

∂K
(1, 1)(K − 1) +

∂Y

∂L
(1, 1)(L − 1)

= 1 + α(K − 1) + β(L− 1)

(c) What is the equation of the tangent “plane” to the level curve corresponding to Y = 1 at

K = L = 1?

Solution:

0 = α(K − 1) + β(L− 1) → αK + βL = α+ β.

(d) For small changes along the level curve, starting at K = L = 1, how many units of labor are

needed to replace each unit of capital (i.e. What is the MRSL→K)?

Solution: The Equation of the tangent plane to the level curve at (K,L) = (1, 1) is

0 = (∆K,∆L) · (fK(1, 1), fL(1, 1)) = (∆K,∆L) · (α, β),

which implies that ∆L/∆K = −α/β.

(e) If it were possible to increase K and L slightly in any proportion so that ||(∆K,∆L)|| = c,
where c is a very small positive number, what change in K and L would lead to the greatest

increase in output?

Solution: Equation of the tangent plane to the production surface at (1, 1) is

Y = 1 + (∆K,∆L) · (α, β).

Thus, the maximum value of Y is attained when the above dot product is maximized. This

will occur when

(∆K,∆L) =
c

√

α2 + β2
(α, β).

1.2.5 Chain Rule

Definition 1.2.6 (Chain Rule–Case 1). Suppose that z = f(x, y) is a differentiable function of x
and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable

function of t and
dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

Definition 1.2.7 (Chain Rule–Case 2). Suppose that z = f(x, y) is a differentiable function of x
and y, where x = g(s, t) and y = h(s, t) are both differentiable functions of s and t. Then

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
and

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
.
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Definition 1.2.8 (Chain Rule–General Version). Suppose that u is a differentiable function of the n
variables x1, . . . , xn and each xj is a differentiable function of the m variables t1, . . . , tm. Then u
is a function of t1, . . . , tm and

∂u

∂ti
=

∂u

∂x1

∂x1
∂ti

+
∂u

∂x2

∂x2
∂ti

+ · · · + ∂u

∂xn

∂xn
∂ti

for each i = 1, 2, . . . ,m.

Example 1.2.4. Given z = f(x, y, t) = yex + t2 where x = g(y, t) = ln(y + t) and y = h(t) =
t3 − 9, use the chain rule to find the total effect of a change in t on z (dz/dt) at t = 2.

Solution:

dz

dt
=

∂z

∂x

(

∂x

∂y

dy

dt
+

∂x

∂t

)

+
∂z

∂y

dy

dt
+

∂z

∂t

= yex
(

1

y + t
3t2 +

1

y + t

)

+ 3ext2 + 2t.

When t = 2, y = −1 and x = 0, so

dz

dt

∣

∣

∣

∣

t=2

= −1(12 + 1) + 12 + 4 = 3.

Example 1.2.5. Assume the following functional forms:

z = x2 + xy3, x = uv2 + w3, y = u+ vew.

Use the chain rule to find the indicated partial derivatives at the given point:

∂z

∂u
,
∂z

∂v
,
∂z

∂w
, when u = 2, v = 1, w = 0.

Solution: First note that u = 2, v = 1, w = 0 implies x = 2, y = 3

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v

= (2x+ y3)(v2) + (3xy2) = (2x+ y3)(2uv) + (3xy2)(ew)

= 85, = 178,

∂z

∂w
=

∂z

∂x

∂x

∂w
+

∂z

∂y

∂y

∂w

= (2x+ y3)(3w2) + (3xy2)(vew)

= 54.

Example 1.2.6. A function is called homogeneous of degree n if it satisfies the equation

f(tx, ty) = tnf(x, y)

for all t, where n is a positive integer and f has continuous second order partial derivatives.

(a) Verify that f(x, y) = x2y + 2xy2 + 5y3 is homogeneous of degree 3.

Solution: Applying the above definition

f(tx, ty) = (tx)2(ty) + 2(tx)(ty)2 + 5(ty)3 = t3x2y + 2t3xy2 + 5t3y3

= t3[x2y + 2xy2 + 5y3] = t3f(x, y).
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(b) Show that if f is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y).

Solution: To see this clearly, rewrite the above definition in the following way:

f(a, b) = tnf(x, y),

where a = tx and b = ty. Then differentiating with respect to t gives

∂f(tx, ty)

∂a

da

dt
+

∂f(tx, ty)

∂b

db

dt
= ntn−1f(x, y)

→ ∂f(tx, ty)

∂a
x+

∂f(tx, ty)

∂b
y = ntn−1f(x, y).

Since this equation holds for all t, we can set t = 1 to obtain the desired result.

Theorem 1.2.2 (Young’s Theorem). Suppose that y = f(x1, x2, . . . , xn) is twice continuously

differentiable (C2) on an open region J ∈ Rn. Then, for all x ∈ J and for each pair of indices i, j,

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x).

Example 1.2.7. Consider the general Cobb-Douglas production function Q = kxayb. Then,

∂Q

∂x
= akxa−1yb,

∂Q

∂y
= bkxayb−1,

∂2Q

∂x∂y
= abkxa−1yb−1 =

∂2Q

∂y∂x
.

We can continue taking higher order derivatives, and Young’s theorem holds for these cases.

For example, if we take an x1x2x4 derivative of order three, then the order of differentiation does

not matter for a C3-function. We can keep going and define kth order partial derivatives and Ck

functions. For Ck functions, the order you take the kth partial derivatives does not matter.

Example 1.2.8. If f is homogeneous of degree n, show that

x2
∂2f(x, y)

∂x2
+ 2xy

∂2f(x, y)

∂x∂y
+ y2

∂2f(x, y)

∂y2
= n(n− 1)f(x, y).

Solution: To obtain the desired result, differentiate the following result with respect to t

∂f(tx, ty)

∂a
x+

∂f(tx, ty)

∂b
y = ntn−1f(x, y).

Using the chain rule, we obtain

x
∂2f(tx, ty)

∂a2
da

dt
+ x

∂2f(tx, ty)

∂a∂b

db

dt
+ y

∂2f(tx, ty)

∂b∂a

da

dt
+ y

∂2f(tx, ty)

∂b2
db

dt
= n(n− 1)tn−2f(x, y)

→ x2
∂2f(tx, ty)

∂a2
+ 2xy

∂2f(tx, ty)

∂a∂b
+ y2

∂2f(tx, ty)

∂b2
= n(n− 1)tn−2f(x, y).

Again, setting t = 1 gives the desired result.
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Example 1.2.9. If f is homogeneous of degree n, show that

fx(tx, ty) = tn−1fx(x, y).

Solution: To obtain the desired result, differentiate

f(a, b) = tnf(x, y)

with respect to x to obtain

∂f(tx, ty)

∂a

da

dx
= tn

∂f(x, y)

∂x
→ ∂f(tx, ty)

∂x
= tn−1∂f(tx, ty)

∂x
.

Thus, if a function, f , is homogeneous of degree n, its derivative, f ′, is homogeneous of degree

n − 1. Note that evaluating the function at (tx, ty) and subsequently taking the derivative of

f(tx, ty) with respect to the first argument, tx, is equivalent to taking the derivative of f(x, y)
at and evaluating at (tx, ty).

Example 1.2.10. Verify that partial derivative of f(x, y) = x2y + 2xy2 + 5y3 with respect to x is

homogeneous of degree 2.

Solution: The partial derivative is given by

fx(x, y) = 2xy + 2y2.

Evaluating at (tx, ty) gives

fx(tx, ty) = 2(tx)(ty) + 2(ty)2 = t2[2xy + 2y2] = t2fx(x, y).

Thus partial derivative of the given function is homogeneous of degree 2.

1.2.6 Second Order Derivatives and Hessians

The Hessian matrix is a square matrix of second-order partial derivatives of a function. Let x ∈ Rn

and let f : Rn → R be a real-valued function having 2nd-order partial derivatives in an open set

U containing x. Given the real-valued function f(x1, x2, . . . , xn), the Hessian matrix of f is the

matrix with elements

H(f)ij(x) = DiDjf(x),

where x = (x1, x2, . . . , xn) and DiDj is the differentiation operator with respect to the ijth argu-

ment:

H(f) =



























∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2

· · · ∂2f
∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n
.



























If all n2 second-order partial derivatives of f exist and are continuous functions of (x1, x2, . . . , xn),
we say that f is twice continuously differentiable or C2.
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The Bordered Hessian matrix of f is a square matrix of second-order partial derivatives that

is bordered by first-order partial derivatives. Given the real-valued function f(x1, x2, . . . , xn), the

bordered Hessian matrix of f is the matrix

H(f) =





































0 ∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

∂f
∂x1

∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂f
∂x2

∂2f
∂x2 ∂x1

∂2f
∂x2

2

· · · ∂2f
∂x2 ∂xn

...
...

...
. . .

...

∂f
∂xn

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n





































The importance of the Hessian and Bordered Hessian matrices will become clear in later sections.

1.3 Basic Analysis

1.3.1 Induction and Examples

Theorem 1.3.1 (Principle of Mathematical Induction). Let P (n) be a statement that is either true

or false for each n ∈ N. Then P (n) is true for all n ∈ N, provided that

(a) P (1) is true, and

(b) for each k ∈ N, if P (k) is true, then P (k + 1) is true.

Example 1.3.1. Prove that 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1) for every natural number n.

Solution: Let P (n) be the statement

1 + 2 + 3 + · · · + n =
1

2
n(n+ 1)

Then P (1) asserts that 1 = 1
2 (1)(1 + 1), P (2) asserts that 1 + 2 = 1

2(2)(2 + 1), and so on.

In particular, we see that P (1) is true, and this establishes the basis for induction. To verify the

induction step, we suppose that P (k) is true, where k ∈ N. That is, we assume

1 + 2 + 3 + · · · + k =
1

2
k(k + 1).

Since we wish to conclude that P (k + 1) is true, we add k + 1 to both sides to obtain

1 + 2 + 3 + · · · + k + (k + 1) =
1

2
k(k + 1) + (k + 1)

=
1

2
[k(k + 1) + 2(k + 1)]

=
1

2
(k + 1)(k + 2)

=
1

2
(k + 1)[(k + 1) + 1].

Thus P (k + 1) is true whenever P (k) is true, and by principle of mathematical induction, we

conclude that P (n) is true for all n.
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Since the format of a proof using mathematical induction always consists of the same two steps

(establishing the basis for induction and verifying the induction step), it is common practice to

reduce some of the formalism by omitting explicit reference to the statement P (n). It is also ac-

ceptable to omit identifying the steps by name.

Example 1.3.2. Prove by induction that 7n − 4n is a multiple of 3, for all n ∈ N.

Solution: This is true when n = 1, since 71 − 41 = 3. Now let k ∈ N and suppose that 7k − 4k

is a multiple of 3. That is, 7k − 4k = 3m for some m ∈ N. It follows that

7k+1 − 4k+1 = 7k+1 − 7 · 4k + 7 · 4k − 4 · 4k

= 7(7k − 4k) + 3 · 4k

= 7(3m) + 3 · 4k

= 3(7m+ 4k).

Since m and k are natural numbers, so is 7m + 4k. Thus 7k+1 − 4k+1 is also a multiple of 3, and

by induction we conclude that 7n − 4n is a multiple of 3 for all n ∈ N.

In the above example, we have added and subtracted the term 7 · 4k. Where did it come from?

We want somehow to use the induction hypothesis 7k−4k = 3m, so we break 7k+1 apart into 7 ·7k.

We would like to have 7k − 4k = 3m as a factor instead of just 7k, but to do this we must subtract

(and add) the term 7 · 4k.

Example 1.3.3. Prove that 12 + 22 + · · · + n2 = 1
6n(n+ 1)(2n + 1) for all n ∈ N.

Solution: This is true when n = 1, since 1
6(1)(1 + 1)(2 · 1 + 1) = 1. Now let k ∈ N and

suppose that 12+22+ · · ·+ k2 = 1
6k(k+1)(2k+1). Adding (k+1)2 to both sides, it follows that

12 + 22 + · · ·+ k2 + (k + 1)2 =
1

6
k(k + 1)(2k + 1) + (k + 1)2

=
1

6
[2k3 + 3k2 + k] + k2 + 2k + 1

=
1

6
[2k3 + 9k2 + 13k + 6]

=
1

6
[(k + 1)(k + 2)(2k + 3)].

Thus, the above statement holds for n = k + 1 whenever it holds for n = k, and by principle of

mathematical induction, we conclude that the statement is true for all n.

Example 1.3.4. Prove that

1

3
+

1

15
+

1

35
+ · · · + 1

4n2 − 1
=

n

2n+ 1
, for all n ∈ N

Solution: This is true when n = 1, since 1
2·1+1 = 1

3 . Now let k ∈ N and suppose that

1

3
+

1

15
+

1

35
+ · · ·+ 1

4k2 − 1
=

k

2k + 1
.
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Adding 1
4(k+1)2−1

to both sides, it follows that

1

3
+

1

15
+

1

35
+ · · ·+ 1

4k2 − 1
+

1

4(k + 1)2 − 1
=

k

2k + 1
+

1

4(k + 1)2 − 1

=
k

2k + 1
+

1

4k2 + 8k + 3

=
k

2k + 1
+

1

(2k + 1)(2k + 3)

=
2k2 + 3k + 1

(2k + 1)(2k + 3)

=
k + 1

2k + 3
.

Thus, the above statement holds for n = k + 1 whenever it holds for n = k, and by principle of

mathematical induction, we conclude that the statement is true for all n.

1.3.2 Neighborhoods and Open and Closed Sets

Definition 1.3.1 (Neighborhood). Let x ∈ R and let ε > 0. A neighborhood of x (or an ε-

neighborhood of x) is a set of the form

N(x; ε) = {y ∈ R : |x− y| < ε}.
The number ε is referred to as the radius of N(x; ε).

A neighborhood of x of radius ε is the open interval (x− ε, x+ ε) of length 2ε centered at x.

Definition 1.3.2 (Deleted Neighborhood). Let x ∈ R and let ε > 0. A deleted neighborhood of x is

a set of the form

N∗(x; ε) = {y ∈ R : 0 < |x− y| < ε}.
Clearly N∗(x; ε) = N(x; ε)\{x}.

Neighborhoods give us a framework within which we can talk about “nearness”.

Definition 1.3.3 (Interior and Boundary Points). Let S be a subset of R. A point x in R is an interior

point of S if there exists a neighborhood N of x such that N ⊆ S. If for every neighborhood N
of x, N ∩ S 6= ∅ and N ∩ (R\S) 6= ∅, then x is called a boundary point of S. The set of all

interior points of S is denoted int S, and the set of all boundary points of S is denoted by bdS (see

figure 1.7).

Example 1.3.5.

(a) Let S be the open interval (0, 5) and let x ∈ S. If ε = min{x, 5 − x}, then we claim that

N(x; ε) ⊆ S. Indeed, for all y ∈ N(x; ε) we have |y − x| < ε, so that

−x ≤ −ε < y − x < ε ≤ 5− x

Thus 0 < y < 5 and y ∈ S. That is, for some arbitrary point in S, there exists a neighborhood

that is completely contained in S. It follows that every point in S is an interior point of S
(S ⊆ intS). Since the inclusion intS ⊆ S always holds, we have S = intS.

The point 0 is not a member of S, but every neighborhood of 0 will contain positive numbers

in S. Thus 0 is a boundary point of S. Similarly, 5 ∈ bdS and, in fact, bdS = {0, 5}. Note

that none of the boundary of S is contained in S. Of course, there is nothing special about the

open interval (0, 5) in this example. Similar comments would apply to any open interval.
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Figure 1.7: Interior and Boundary Points

Boundary 

Point

Interior 

Point

(b) Let S be the closed interval [0, 5]. The point 0 is still a boundary point of S, since every

neighborhood of x will contain negative numbers not in S. We have intS = (0, 5) and

bdS = {0, 5}. This time S contains all of its boundary points, and the same could be said of

any other closed interval.

(c) Let S be the interval [0, 5). Then again intS = (0, 5) and bdS = {0, 5}. We see that S
contains some of its boundary, but not all of it.

(d) Let S be the interval [2,∞). Then intS = (2,∞) and bdS = {2}. Note that there is no

“point” at ∞ to be included as a boundary point at the right end.

(e) Let S = R. Then intS = S and bdS = ∅.

Example 1.3.6. Find the interior and boundary of the following set: S =
{

1
n : n ∈ N

}

Solution: The above set is
{

1,
1

2
,
1

3
,
1

4
, · · ·

}

Given the distance between points, it is clear that there does not exist a neighborhood N around any

point that is contained in S. Thus, the interior of S = ∅. The boundary of the set is 0 ∪ S

Example 1.3.7. Find the interior and boundary of each set.

1. [0, 3] ∪ (3, 5)

Solution: (0, 5), {0, 5}

2.
{

r ∈ Q : 0 < r <
√
2
}

Solution: ∅, [0,
√
2]

3.
{

r ∈ Q : r ≥
√
2
}

Solution: ∅, [
√
2,∞)

4. [0, 2] ∩ [2, 4]

Solution: ∅, {2}

Definition 1.3.4 (Open and Closed Sets). Let S ⊆ R. If bdS ⊆ S, then S is said to be closed. If

bdS ⊆ R\S, then S is said to be open.

Theorem 1.3.2.

(a) A set S is open iff S = intS. Thus, S is open iff every point in S is an interior point of S.

(b) A Set S is closed iff its complement R\S is open.

Example 1.3.8. Classify each of the following sets, S, as open, closed, neither, or both.
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1. N

Solution: Not open: intS = ∅ 6= S,

Closed: bdS = S

2. Q

Solution: Neither, intS = ∅ 6= S
and bdS = R * S

3.
⋂∞

n=1

(

0, 1
n

)

Solution: Both: (0, 1) ∩ (0, 12) ∩ · · · = ∅
(int ∅ = ∅ and bd∅ = ∅)

4.
{

x : |x− 5| ≤ 1
2

}

Solution: Not open: intS = (4.5, 5.5) 6=
S, Closed: bdS = {4.5, 5.5} ∈ S

5. {x : x2 > 0}
Solution: Open: intS = R\{0} = S,

Not Closed: bdS = {0} 6∈ S

6.
{

1
n : n ∈ N

}

Solution: Neither: intS = ∅ 6= S
and bdS * S (0 6∈ S).

Example 1.3.9. True/False: If S ⊆ R2 is an open set, then f(x, y) = x + y cannot have a global

maximizer subject to (x, y) ∈ S.

Solution: True. Suppose (x∗, y∗) is a global maximizer of x + y subject to (x, y) ∈ S. Since

S is open, we can always find ε small enough so that an open ε-neighborhood around (x∗, y∗) is

entirely contained in S. But then a point such as (x∗ + ε/2, y∗ + ε/2) would lie in S with a value

of the objective function (x∗ + ε/2) + (y∗ + ε/2); i.e.,

f
(

x∗ +
ε

2
, y∗ +

ε

2

)

= x∗ + y∗ + ε > x∗ + y∗ = f(x∗, y∗).

Thus, (x∗, y∗) cannot be a global maximizer, and our original assumption must be false. Specifi-

cally, ∄(x, y) ∈ S that is a global maximizer of f(x, y) = x+ y.

Theorem 1.3.3.

(a) The union of any collection of open sets is an open set.

(b) The intersection of any finite collection of open sets is an open set.

Proof.

(a) Let Gi be an arbitrary open set and let S =
⋃∞

i=1 Gi, where G = {G1, G2, . . .} is an arbitrary

collection of open sets. If x ∈ S, then x ∈ Gi for some Gi ∈ G. Since Gi is open, x is an

interior point of Gi. That is, there exists a neighborhood N of x such that N ⊆ Gi. But

Gi ⊆ S, so N ⊆ S, implying that x is an interior point of S. Since we have shown that a

neighborhood of an arbitrary point in S is completely contained in S, S is open.

(b) First note that this result does not hold for infinite collections of sets. To see why, notice that

for each n ∈ N, if we define An = (−1/n, 1/n), then each An is an open set. However,
⋂∞

n=1An = {0}, which is not open. Thus we see that we cannot generalize the above result

to the intersection of an infinite collection of open sets.

Consider the finite case. Define S :=
⋂n

i=1 Gi, where G = {G1, G2, . . . , Gn} is an arbitrary

collection of open sets. If S = ∅, we are done, since ∅ is open (and closed) (int∅ = ∅). If

S 6= ∅, let x ∈ S. Then x ∈ Gi for all i = 1, 2, . . . , n. Since each Gi is open, there exist

neighborhoods Ni(x; εi) of x such that Ni(x; εi) ⊆ Gi. Let ε = min{ε1, . . . , εn}. Then

N(x; ε) ⊆ Gi for each i = 1, . . . , n, so N(x; ε) ⊆ S. Thus x is an interior point of S, and S
is open.
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Corollary 1.3.1.

(a) The intersection of any collection of closed sets is a closed set.

(b) The union of any finite collection of closed sets is a closed set.

Proof.

(a) To prove the above result, define T :=
⋂∞

i=1 Fi, where F = {F1, F2, . . .} is an arbitrary

infinite collection of closed sets. If T = ∅, we are done, since ∅ is closed (and open)

(bd∅ = ∅ ⊆ ∅). R\ (
⋂∞

i=1 Fi) =
⋃∞

i=1(R\Fi) (the complement of the intersection will be

the union of the individual complements, which can be seen using a simple venn diagram).

Thus, we have R \ (⋂∞
i=1 Fi) equal to the union of open sets, since a set is closed if and only

if its complement is open. Since we have shown above that the union of any collection of

open sets is open, we have that R \ (⋂∞
i=1 Fi) is open. Thus,

⋂∞
i=1 Fi must be closed.

(b) To prove the above result, define T :=
⋃n

i=1 Fi, where F = {F1, F2, . . . , Fn} is an arbitrary

finite collection of closed sets. R \ (⋃n
i=1 Fi) =

⋂n
i=1(R \ Fi) (the complement of the union

will be the intersection of the individual complements, which again can be seen using a simple

venn diagram). Thus, we have R \ (⋃n
i=1 Fi) equal to the intersection of open sets. Since we

have shown above that the intersection of any finite collection of open sets is open, we have

that R \ (
⋃n

i=1 Fi) is open. Thus,
⋃n

i=1 Fi must be closed by definition.

1.3.3 Convergence and Boundedness

A sequence, {sn}, is a function whose domain is the set N of natural numbers. If s is a sequence,

denote its value at n by sn.

Definition 1.3.5 (Convergence). A sequence {sn} is said to converge to the real number s provided

that for each ε > 0, there exists N ∈ R such that for all n ∈ N, n > N implies that |sn − s| < ε. If

{sn} converges to s, then s is called the limit of the sequence {sn}, and we write limn→∞ sn = s
or simply sn → s. If a sequence does not converge to a real number, it is said to diverge.

Example 1.3.10. Prove that lim 1/n = 0.

Solution: Given ε > 0, let N = 1/ε. Then for any n > N , |1/n − 0| = 1/n < 1/N = ε.

Example 1.3.11. Prove that lim(n2 + 2n)/(n3 − 5) = 0
Solution: Given ε > 0, let N = max{3, 4/ε}. Then n > N implies that n > 3 and n > 4/ε.

Since n > 3, we have n2 + 2n < 2n2 and n3 − 5 > n3/2. Thus for n > N we have
∣

∣

∣

∣

n2 + 2n

n3 − 5
− 0

∣

∣

∣

∣

=
n2 + 2n

n3 − 5
<

2n2

1
2n

3
=

4

n
<

4

N
= ε.

Definition 1.3.6 (Bounded Sequence). A sequence {sn} is said to be bounded if the range {sn :
n ∈ N} is a bounded set. That is if there exists an M ≥ 0 such that |sn| ≤ M for all n ∈ N.

Theorem 1.3.4. Every convergent sequence in Rn is bounded.

Proof. Let sn be a convergent sequence and let sn → s. From the definition of convergence with

ε = 1, we obtain N ∈ R such that |sn − s| < 1 whenever n > N . Thus for n > N the triangle

inequality implies that |sn| < |s| + 1. We know that sn is bounded if the range {sn : n ∈ N} is a

bounded set, that is, if there exists an M ≥ 0 such that |sn| ≤ M for all n ∈ N. Thus, let

M = max{|s1|, . . . , |sN |, |s|+ 1},
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(so that M could either be |s| + 1 or the largest absolute value among the first N terms) then we

have |sn| ≤ M for all n ∈ N, so sn is bounded.

Theorem 1.3.5. Suppose that {sn} and {tn} are convergent sequences with lim sn = s and

lim tn = t. Then

(a) lim(sn + tn) = s+ t

(b) lim(ksn) = ks and lim(k + sn) = k + s for any k ∈ R

(c) lim(sntn) = st

(d) lim(sn/tn) = s/t, provided that tn 6= 0 for all n and t 6= 0

Proof.

(a) To show that sn + tn → s + t, we need to make the difference |(sn + tn) − (s + t)| small.

Using the triangle inequality, we have

|(sn + tn)− (s+ t)| = |(sn − s) + (tn − t)| ≤ |sn − s|+ |tn − t|.

Now, given any ε > 0, since sn → s, there exists N1 such that n > N1 implies that |sn−s| <
ε
2 . Similarly, since tn → t, there exists N2 such that n > N2 implies that |tn − t| < ε

2 . Thus

if we let N = max{N1, N2}, then n > N implies that

|(sn − s) + (tn − t)| ≤ |sn − s|+ |tn − t| < ε

2
+

ε

2
= ε.

(b) To show that ksn → ks for any k ∈ R, we need to make the difference |ksn − ks| small. We

have

|ksn − ks| = |k(sn − s)|
= |k||sn − s|.

Now, given any ε > 0, since sn → s, there exists N such that n > N implies that |sn − s| <
ε/|k|. Thus for n > N

|ksn − ks| = |k||sn − s| < |k| ε|k| = ε.

To show that k + sn → k + s, note that

|(k + sn)− (k + s)| = |sn − s|.

Thus, for n > N , k + sn → k + s.

(c) Using the triangle inequality

|sntn − st| = |(sntn − snt) + (snt− st)|
≤ |sntn − snt|+ |snt− st|
= |sn||tn − t|+ |t||sn − s|.
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We know that every convergent sequence is bounded (Theorem 1.3.4). Thus, sn is bounded,

and there exists M1 > 0 such that |sn| ≤ M1 for all n. Letting M = max{M1, |t|}, we

obtain the inequality

|sntn − st| ≤ M |tn − t|+M |sn − s|.
Now, given ant ε > 0, there exists N1 and N2 such that |tn − t| < ε

2M when n > N1 and

|sn − s| < ε
2M when n > N2. Let N = max{N1, N2}. Then n > N implies that

|sntn − st| ≤ M |tn − t|+M |sn − s|

< M
( ε

2M

)

+M
( ε

2M

)

=
ε

2
+

ε

2
= ε.

(d) Since sn/tn = sn(1/tn), it suffices from part (c) to show that lim 1/tn = 1/t. That is, given

ε > 0, we must show that

∣

∣

∣

∣

1

tn
− 1

t

∣

∣

∣

∣

=

∣

∣

∣

∣

t− tn
tnt

∣

∣

∣

∣

< ε

for all n sufficiently large. To get a lower bound on how small the denominator can be, we

note that since t 6= 0, there exists an N1 such that n > N1 implies that |tn − t| < |t|/2. Thus

for n > N1 we have

|tn| = |t− (t− tn)| ≥ |t| − |t− tn| > |t| − |t|
2

=
|t|
2

by the reverse triangle inequality. There also exists an N2 such that n > N2 implies that

|tn − t| < 1
2ε|t|2. Let N = max{N1, N2}. Then n > N implies that

∣

∣

∣

∣

1

tn
− 1

t

∣

∣

∣

∣

=

∣

∣

∣

∣

t− tn
tnt

∣

∣

∣

∣

<
2

|t|2 |tn − t| < ε.

Hence lim(1/tn) = 1/t.

Theorem 1.3.6. A set S ⊆ Rn is closed if and only if every convergent sequence in S converges to

a point in S.

Proof. Suppose that S is closed and that xn is a sequence in S converging to x. Suppose that x 6∈ S.

Because S is closed, Rn\S is open, so that for some ε > 0, there exists N(x; ε) ⊆ Rn\S. That is

N(x; ε)
⋂

S = ∅. Since limxn = x, there is an N such that xn ∈ N(x; ε), if n > N . But then

xn 6∈ S, whenever n > N , which is impossible since xn is a sequence in S. Thus it must be the

case that if a set S is closed, then every convergent sequence in S must converge to a point in S.

Suppose that S is not closed. Then Rn\S is not open, implying that there exists an x ∈ Rn\S
such that N(x; ε)

⋂

S 6= ∅, for every ε > 0. Practically, this means that at least part of the

neighborhood of x lies in S. In particular, for every positive integer n, there exists an xn ∈ S, such

that |xn − x| < 1/n. This gives us a sequence {xn} in S converging to a point x not in S. Thus,

by the contra-positive argument (not closed implies there exists a convergent sequence in S that

converges to a point not in S), we have that if every convergent sequence in S converges to a point

in S, then S must be closed.
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1.3.4 Compactness

Theorem 1.3.7 (Heine-Borel). A subset S of Rn is compact iff S is closed and bounded.

Example 1.3.12. Let S ⊆ R2 be defined as follows:

S = {(x, y) ∈ R2 : y = sin(1/x), x > 0 ∪ {(0, 0)}}

Is S closed? Open? Bounded? Compact?

Solution: None. Let sk = (xk, yk). S is bounded if there exists an ε > 0 such that |si− sj| ≤ ε
for all sk ∈ S. Since x ∈ [0,+∞), there does not exist a neighborhood of radius ε that contains

S. Thus, S is not bounded, and hence not compact (Heine-Borel Theorem). In addition, S is not

closed. To see this, recall that a set is closed if every convergent sequence in the set has its limit in

the set. That is, a closed set is a set that is closed under limit operations. Now, consider the sequence

{(xk, yk)}k≥1 ∈ S, given by (xk, yk) = ( 2
π(4k+1) , 1), for k ≥ 1. Then we have (xk, yk) ∈ S since

sin(1/xk) = sin[(4k + 1)(π/2)] = 1 = yk. We can now see that (xk, yk) → (0, 1) as k → ∞.

But (0, 1) 6∈ S, and as a consequence, S is not closed. Also, since any ε-neighborhood around any

point in S is not contained in S, there are no interior points (intS = ∅). Thus, S is not open.
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Chapter 2

Basic Matrix Properties and Operations

2.1 Determinants

2.1.1 Minors, Cofactors, and Evaluating Determinants

Definition 2.1.1 (Minor and Cofactor of a Matrix). Let A be an n × n matrix. Let Aij be the

(n− 1)× (n− 1) submatrix obtained by deleting row i and column j from A. Then, the scalar

Mij ≡ detAij

is called the (i, j)th minor of A and the scalar

Cij ≡ (−1)i+jMij

is called the (i, j)th cofactor of A.

Definition 2.1.2 (Determinant). The determinant of an n× n matrix A is given by

detA = a11C11 + a12C12 + · · ·+ a1nC1n

= a11M11 − a12M12 + · · ·+ (−1)n+1a1nM1n.

Example 2.1.1. To calculate the determinant of a 2× 2 matrix we have

det

(

a11 a12
a21 a22

)

= a11a22 − a12a21. (2.1)

To calculate the determinant of a 3× 3 matrix we have

det(A3×3) = det





a11 a12 a13
a21 a22 a23
a31 a32 a33





= a11 det

(

a22 a23
a32 a33

)

− a12 det

(

a21 a23
a31 a33

)

+ a13 det

(

a21 a22
a31 a32

)

. (2.2)

2.1.2 Properties of Determinants

The following is a list of some useful properties of determinants:
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(a) Rows and columns can be interchanged without affecting the value of a determinant. That is

|A| = |AT |.

(b) If two rows (or columns) are interchanged, the sign of the determinant changes. For example

∣

∣

∣

∣

3 4
1 −2

∣

∣

∣

∣

= −
∣

∣

∣

∣

1 −2
3 4

∣

∣

∣

∣

.

(c) If a row (or column) is changed by adding to or subtracting from its elements the correspond-

ing elements of any other row (or column), the determinant remains unaltered. For example

∣

∣

∣

∣

3 4
1 −2

∣

∣

∣

∣

∼
∣

∣

∣

∣

3 + 1 4− 2
1 −2

∣

∣

∣

∣

=

∣

∣

∣

∣

4 2
1 −2

∣

∣

∣

∣

= −10.

(d) If the elements in any row (or column) have a common factor α, then the determinant equals

the determinant of the corresponding matrix in which α = 1, multiplied by α. For example

∣

∣

∣

∣

6 8
1 −2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

3 4
1 −2

∣

∣

∣

∣

= 2× (−10) = −20.

(e) When at least one row (or column) of a matrix is a linear combination of the other rows (or

columns), the determinant is zero. Conversely, if the determinant is zero, then at least one

row and/or one column are linearly dependent on the other rows and columns, respectively.

For example the

det





3 2 1
1 2 −1
2 −1 3





is zero because the first column is a linear combination of the second and third columns

column 1 = column 2 + column 3.

Similarly, there is a linear dependence between the rows, which is given by the relation

row 1 =
7

8
row 2 +

4

5
row 3.

(f) The determinant of an upper triangular or lower triangular matrix is the product of the main

diagonal entries. For example:

∣

∣

∣

∣

∣

∣

3 2 1
0 2 −1
0 0 4

∣

∣

∣

∣

∣

∣

= 3× 2× 4 = 24.

(g) The determinant of the product of two square matrices is the product of the individual deter-

minants. Fore example

|AB| = |A||B|.
This rule can be generalized to any number of factors. One immediate application is to matrix

powers: |A2| = |A||A| = |A|2, and more generally |An| = |A|n for integer n.
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2.1.3 Singular Matrices and Rank

If the determinant of a n × n square matrix is zero, then the matrix is said to be singular. This

means that at least one row and/or one column are linearly dependent on the others. The rank r of a

matrix A, written r = rank A, is the greatest number of linearly independent rows or columns that

exist in the matrix A. Numerically, r is equal to the order of the largest non-vanishing determinant

|B| associated with any square matrix B, which can be constructed from A by a combination of r
rows and r columns. If the determinant of A is nonzero, then A is said to be nonsingular. The rank

of a nonsingular n×n matrix is equal to n. The rank of AT is the same as that of A, since it is only

necessary to swap “rows” and “columns” in the definition.

Example 2.1.2. The 3× 3 matrix

A =





3 2 2
1 2 −1
2 −1 3





has rank r = 3 because |A| = −5 6= 0.

Example 2.1.3. The matrix

A =





3 2 1
1 2 −1
2 −1 3





already used in an above section (2.1.2 on page 33) is singular because its first row and column may

be expressed as linear combinations of the others. Removing the first row and column, we are left

with a 2 × 2 matrix whose determinant is 2(3) − (−1)(−1) = 5 6= 0. Consequently, matrix A has

rank r = 2.

2.2 Inverses of Matrices

Definition 2.2.1 (Matrix Inverse). Let I = [e1, e2, . . . , en] be an n×n identity matrix. Let A be an

n× n matrix. An n× n matrix, B, is called an inverse of A if and only if AB = I and BA = I . B
is typically written as A−1.

The most important application of inverses is the solution of linear systems. Suppose

Ax = y,

where x and y are n × 1 column vectors. Premultiplying both sides by A−1 we get the inverse

relationship

x = A−1y.

More generally, consider the matrix equation for multiple (m) right-hand sides:

A
n×n

X
n×m

= Y
n×m

,

which reduces to Ax = y for m = 1. The inverse relation that gives X as a function of Y is

X = A−1Y.

In particular, the solution of

AX = I

is X = A−1. Practical methods for computing inverses are based on directly solving this equation.
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2.2.1 Computation of Inverses

The explicit calculation of matrix inverses is seldom needed in large matrix computations. But,

occasionally the need arises for calculating the explicit inverse of small matrices by hand. For

example, the inversion of Jacobian matrices.

A general formula for elements of the inverse is as follows. Let B = [bij ] = A−1. Then

bij =
Cji

|A| ,

where bij denotes the entries of A−1. Cij is defined as (i, j)th cofactor of A or, more precisely,

the determinant of the submatrix of order (n − 1) × (n − 1) obtained by deleting the ith row and

jth column of A, multiplied by (−1)i+j . The n × n matrix whose (i, j)th entry is Cji is called the

adjugate (or classical adjoint) of A and is written adj A.1

This direct inversion procedure is useful only for small matrix orders: 2 or 3. In the examples

below the inversion formulas for second and third order matrices are listed.

Example 2.2.1. For order n = 2:

A =

[

a11 a12
a21 a22

]

implies A−1 =
1

|A|

[

a22 −a12
−a21 a11

]

,

where |A| is given by equation 2.1 on page 33.

Example 2.2.2. For order n = 3:

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 , A−1 =
1

|A|





C11 C21 C31

C12 C22 C32

C13 C23 C33





where

C11 =

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

,

C12 = −
∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

,

C13 =

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

,

C21 = −
∣

∣

∣

∣

a12 a13
a32 a33

∣

∣

∣

∣

,

C22 =

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

,

C23 = −
∣

∣

∣

∣

a11 a12
a31 a32

∣

∣

∣

∣

,

C31 =

∣

∣

∣

∣

a12 a13
a22 a23

∣

∣

∣

∣

,

C32 = −
∣

∣

∣

∣

a11 a13
a21 a23

∣

∣

∣

∣

,

C33 =

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

,

and |A| is given by equation 2.2 on page 33.

Example 2.2.3.

A =





2 4 2
3 1 1
1 0 1



 , A−1 = −1

8





1 −4 2
−2 0 4
−1 4 −10



 .

If the order exceeds 3, the general inversion formula becomes rapidly useless as it displays combi-

natorial complexity.

1The adjugate has sometimes been called the “adjoint”, but that terminology is ambiguous. Today, “adjoint” of a

matrix normally refers to its conjugate transpose.
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2.2.2 Properties of Inverses

The following is a list of some useful properties of inverses:

(a) The inverse of the transpose is equal to the transpose of the inverse. That is

(AT )−1 = (A−1)T ,

because

AA−1 = (AA−1)T = (A−1)TAT = I.

(b) The inverse of a symmetric matrix is also symmetric. Given the previous rule, (AT )−1 =
A−1 = (A−1)T , hence A−1 is also symmetric.

(c) The inverse of a matrix product is the reverse product of the inverses of the factors. That is

(AB)−1 = B−1A−1.

This property generalizes to an arbitrary number of factors.

(d) For a diagonal matrix D in which all diagonal entries are nonzero, D−1 is again a diagonal

matrix with entries 1/dii.

(e) If S is a block diagonal matrix:

S =















S11 0 0 . . . 0

0 S22 0 . . . 0

0 0 S33 . . . 0
...

...
...

. . .
...

0 0 0 . . . Snn















= diag[Sii],

then the inverse matrix is also block diagonal and is given by

S−1 =















S−1
11 0 0 . . . 0

0 S−1
22 0 . . . 0

0 0 S−1
33 . . . 0

...
...

...
. . .

...

0 0 0 . . . S−1
nn















= diag[S−1
ii ].

(f) The inverse of an upper (lower) triangular matrix is also an upper (lower) triangular matrix.

2.3 Quadratic Forms and Definiteness

2.3.1 Quadratic Forms

Definition 2.3.1 (Quadratic Form). Let A denote an n × n symmetric matrix with real entries and

let x denote an n× 1 column vector. Then

Q(x) = xTAx

is said to be of quadratic form.
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Note that

Q(x) = xTAx =
[

x1 x2 . . . xn
]











a11 . . . a1n
a21 . . . a2n

...
. . .

...

an1 . . . ann





















x1
x2
...

xn











=
[

x1 x2 . . . xn
]











∑n
i=1 a1ixi

∑n
i=1 a2ixi

...
∑n

i=1 anixi











=
∑

i,j

aijxixj .

For example, consider the matrix

A =

[

1 2
2 1

]

and the vector x. Q is given by

Q = xTAx =
[

x1 x2
]

[

1 2
2 1

] [

x1
x2

]

=
[

x1 + 2x2 2x1 + x2
]

[

x1
x2

]

= x21 + 4x1x2 + x22,

which is clearly of quadratic form.

Every quadratic form has a critical point at x = 0. Therefore, we can classify quadratic forms

by whether x = 0 is a maximum, minimum, or neither. This is what definiteness is about.

2.3.2 Definiteness of Quadratic Forms

Definition 2.3.2 (Positive/Negative Definiteness). Let A be an n× n symmetric matrix, then A is

(a) positive definite if xTAx > 0 for all x 6= 0 in Rn,

(b) positive semi-definite if xTAx ≥ 0 for all x 6= 0 in Rn,

(c) negative definite if xTAx < 0 for all x 6= 0 in Rn,

(d) negative semi-definite if xTAx ≤ 0 for all x 6= 0 in Rn, and

(e) indefinite if xTAx > 0 for some x in Rn and < 0 for some other x in Rn.

Example 2.3.1. Consider a 3× 3 diagonal matrix D given by

D =





1 0 0
0 2 0
0 0 4
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and a general 3-element vector x. The general quadratic form is given by

Q(x) = xTAx =
[

x1 x2 x3
]





1 0 0
0 2 0
0 0 4









x1
x2
x3





=
[

x1 2x2 4x3
]





x1
x2
x3





= x21 + 2x22 + 4x23.

Note that for any real vector x 6= 0, Q(x) will be positive, since the square of any number is positive,

the coefficients of the squared terms are positive, and the sum of positive numbers is always positive.

Thus, A is positive definite.

Example 2.3.2. Now consider an alternative 3× 3 matrix given by

D =





−2 1 0
1 −2 0
0 0 −2



 .

The general quadratic form is given by

Q(x) = xTAx =
[

x1 x2 x3
]





−2 1 0
1 −2 0
0 0 −2









x1
x2
x3





=
[

−2x1 + x2 x1 − 2x2 −2x3
]





x1
x2
x3





= −2x21 + 2x1x2 − 2x22 − 2x23

= −2x21 − 2[x22 − x1x2]− 2x23.

Note that Q(x) will be negative if x1 and x2 are of opposite sign or equal to one another. Now

consider the case where |x1| > |x2|. Write Q(x) as

Q(x) = −2x21 + 2x1x2 − 2x22 − 2x23.

The first, third, and fourth terms are clearly negative. With |x1| > |x2|, |2x21| > |2x1x2|, the first

term is more negative than the second term is positive, and hence the whole expression is negative.

Now consider the case where |x1| < |x2|. The first, third, and fourth terms are still negative. But,

with |x1| < |x2|, |2x22| > |2x1x2| so that the third term is more negative than the second term is

positive, and so the whole expression is negative. Thus, this quadratic form is negative definite for

all real values of x 6= 0.

Remark 2.3.1. A matrix that is positive (negative) definite is positive (negative) semi-definite.

The definiteness of a matrix plays an important role. For example, for a function f(x) of one

variable, the sign of the second derivative f ′′(x0) at a critical point x0 gives a sufficient condition

for determining whether x0 is a maximum, minimum, or neither (proposition 1.1.2). This test gen-

eralizes to more than one variable using the definiteness of the Hessian matrix H (more on this

when we get to optimization). There is a convenient way to test for the definiteness of a matrix, but

before we can formulate this test we first need to define the concept of principal minors of a matrix.
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Definition 2.3.3 (Principle Submatrix and Principle Minor). Let A be an n × n matrix. A k × k
submatrix of A formed by deleting (n− k) columns, say columns i1, i2, ...in−k and the same n− k
rows, rows i1, i2, ...in−k, from A is called a kth order principal submatrix of A. The determinant of

a k × k principal submatrix denoted Bk is called a kth order principal minor of A.

Definition 2.3.4 (Leading Principle Submatrix and Leading Principle Minor). Let A be an n × n
matrix. The kth order principle submatrix of A obtained by deleting the last n−k rows and the last

n − k columns from A is called the kth order leading principle submatrix of A. Its determinant,

denoted ∆k, is called the kth order leading principle minor of A.

Example 2.3.3. For a general 3× 3 matrix

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,

there is one third order principle minor: B3 = det(A) = |A|. There are three second order principle

minors:

1. B
(1)
2 =

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

, formed by deleting column 3 and row 3 from A;

2. B
(2)
2 =

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

, formed by deleting column 2 and row 2 from A;

3. B
(3)
2 =

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

, formed by deleting column 1 and row 1 from A.

There are three first order principle minors:

1. B
(1)
1 = a11, formed by deleting the last 2 rows and columns;

2. B
(2)
1 = a22, formed by deleting the first and third columns and rows, and

3. B
(3)
1 = a33, formed by deleting the first 2 rows and columns.

The leading principle minors of order k, denoted ∆k, are:

∆1 = a11, ∆2 =

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

, and ∆3 = det(A) = |A|.

Theorem 2.3.1 (Positive/Negative Definiteness). Let A be an n× n symmetric matrix. Then,

(a) A is positive definite if and only if ∆k > 0 for k = 1, 2, . . . , n (all of its leading principle

minors are strictly positive);

(b) A is negative definite if and only if (−1)k∆k > 0 for k = 1, 2, . . . , n (every leading principle

minor of odd order is strictly negative and every leading principle minor of even order is

strictly positive);

(c) If some kth order principle minor of A (or some pair of them) is nonzero but does not fit either

of the above two sign patterns, then A is indefinite.

Theorem 2.3.2 (Positive/Negative Semi-Definiteness). Let A be an n× n symmetric matrix. Then,
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(a) A is positive semi-definite if and only if Bk ≥ 0 for k = 1, 2, . . . , n (every principle minor

of A is nonnegative);

(b) A is negative semi-definite if and only if (−1)kBk ≥ 0 for k = 1, 2, , . . . , n (every principle

minor of odd order is nonpositive and every principle minor of even order is nonnegative).

Remark 2.3.2. Given an n × n symmetric matrix, the conditions ∆k ≥ 0 for positive semi-

definiteness and (−1)k∆k ≥ 0 for negative semi-definiteness are necessary conditions but not

sufficient conditions. To see this, consider the following 2× 2 symmetric matrix.

A =

(

0 0
0 −4

)

.

For this matrix, ∆1 = 0 and ∆2 = 0. Thus, looking only at leading principle minors, one could

falsely conclude that this matrix is positive semi-definite. However, we have to check all principle

minors to deduce the correct form of semi-definiteness. If one checks all principle minors then

B
(1)
1 = 0 ≤ 0,

B
(2)
1 = −4 ≤ 0,

B2 =

∣

∣

∣

∣

0 0
0 −4

∣

∣

∣

∣

= 0 ≥ 0,

which violates the definition of positive semi-definiteness. In fact, this matrix is negative semi-

definite.

Example 2.3.4. Suppose A is a 4× 4 symmetric matrix. Then

(a) ∆1 > 0,∆2 > 0,∆3 > 0,∆4 > 0 → positive definite

(b) ∆1 < 0,∆2 > 0,∆3 < 0,∆4 > 0 → negative definite

(c) ∆1 > 0,∆2 > 0,∆3 = 0,∆4 < 0 → indefinite because of ∆4

(d) ∆1 < 0,∆2 < 0,∆3 < 0,∆4 < 0 → indefinite because of ∆2 and ∆4

(e) ∆1 = 0,∆2 < 0,∆3 > 0,∆4 = 0 → indefinite because of ∆2

(f) ∆1 > 0,∆2 = 0,∆3 > 0,∆4 > 0 → A is not definite, not negative semi-definite but might

be positive semi-definite. However, to establish this, we must to check all 15 principle minors

Bk, for k = 1, 2, 3, 4.

(g) ∆1 = 0,∆2 > 0,∆3 = 0,∆4 > 0 → A is not definite, but may be positive semi-definite or

negative semi-definite. To determine semi-definiteness we must check all principle minors.

Example 2.3.5. Use the above theorems to check the following matrices for definiteness:

(a)

A =

[

1 2
2 1

]

, ∆1 = 1 > 0, ∆2 = −3 < 0

Thus A is indefinite.
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(b)

A =

[

−1 1
1 −1

]

, B
(1)
1 = B

(2)
1 = −1 < 0, ∆2 = 0

Thus A is negative semi-definite.

(c)

B =





1 0 −1
0 3 0
−1 0 4



 , ∆1 = 1 > 0, ∆2 = 3 > 0, ∆3 = 9 > 0

Thus, B is positive definite.

(d)

B =









1 3 2 3
3 5 −2 4
2 −2 2 1
3 4 1 2









, ∆1 = 1 > 0, ∆2 = −4 < 0, ∆3 = −56 < 0, ∆4 = 142 > 0

Thus B is indefinite.

2.4 Eigenvalues and Eigenvectors

Consider the special form of the linear system Ax = y in which the right-hand side vector y is a

multiple of the solution vector x:

Ax = λx, (2.3)

or, written in full,
a11x1 + a12x2 + · · · + a1nxn = λx1
a21x1 + a22x2 + · · · + a2nxn = λx2

...
... · · · ...

...

an1x1 + an2x2 + · · · + annxn = λxn.

This is called the standard (or classical) algebraic eigenproblem.

Definition 2.4.1 (Eigenvalues and Eigenvectors). The number λ is said to be an eigenvalue of the

n× n matrix A provided that there exists a nonzero vector x such that

Ax = λx,

in which case the vector x is called an eigenvector of the matrix A.

The system (2.3) can be rearranged into homogeneous form

(A− λI)x = 0.

A nontrivial solution of this equation is possible if and only if the coefficient matrix A − λI is

singular. Such a condition can be expressed as the vanishing of the determinant

|A− λI| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.
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When this determinant is expanded, we obtain an algebraic polynomial equation in λ of degree n:

P (λ) = λn + α1λ
n−1 + · · ·+ αn = 0.

This is known as the characteristic equation of the matrix A. The left-hand side is known as the

characteristic polynomial. We know that a polynomial of degree n has n (generally complex) roots

λ1, λ2, . . . , λn. These n numbers are called eigenvalues, eigenroots, or characteristic values of the

matrix A. The following theorem summarizes the results.

Theorem 2.4.1. The number λ is an eigenvalue of the n × n matrix A if and only if λ satisfies the

characteristic equation

|A− λI| = 0.

With each eigenvalue λi, there is an associated vector xi that satisfies

Axi = λxi.

This xi is called an eigenvector or characteristic vector of the matrix A.

An eigenvector is unique only up to a scale factor since if xi is an eigenvector, so is βxi, where

β is an arbitrary nonzero number. For a general 2× 2 matrix

A =

[

a11 a12
a21 a22

]

,

the characteristic polynomial is given by

|A− λI| = λ2 − (a11 + a22)λ+ a11a22 − a12a21,

and we can solve for the associated eigenvalues by setting the above characteristic equation to zero

and solving for λ.

Example 2.4.1. Find the eigenvalues and associated eigenvectors of the matrix

A =

[

5 7
−2 −4

]

.

Solution:

A− λI =

[

5− λ 7
−2 −4− λ

]

(2.4)

so the characteristic equation of A is

0
set
= det(A− λI)

=

∣

∣

∣

∣

5− λ 7
−2 −4− λ

∣

∣

∣

∣

= (5− λ)(−4− λ)− (−2)(7)

= λ2 − λ− 6

= (λ+ 2)(λ− 3).

Thus, the matrix A has two eigenvalues −2 and 3. To distinguish them, we write λ1 = −2 and

λ2 = 3. To find the associated eigenvectors, we must separately substitute each eigenvalue into

(2.4) and then solve the resulting system (A− λI)x = 0.
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Case 1: λ1 = −2. With x =
[

x1 x2
]T

, the system (A− λI)x = 0 is
[

7 7
−2 −2

] [

x1
x2

]

=

[

0
0

]

.

Each of the two scalar equations here is a multiple of the equation x1 + x2 = 0, and any nontrivial

solution x =
[

x1 x2
]T

of this equation is a nonzero multiple of
[

1 −1
]T

. Hence, to within a

constant multiple, the only eigenvector associated with λ1 = −2 is x1 =
[

1 −1
]T

.

Case 2: λ1 = 3. With x =
[

x1 x2
]T

, the system (A− λI)x = 0 is
[

2 7
−2 −7

] [

x1
x2

]

=

[

0
0

]

.

Again, we have only a single equation, 2x1 + 7x2 = 0, and any nontrivial solution of this equa-

tion will suffice. The choice x2 = −2 yields x1 = 7 so (to within a constant multiple) the only

eigenvector associated with λ2 = 3 is x2 =
[

7 −2
]T

.

Example 2.4.2. Find the eigenvalues and eigenvectors of the 2× 2 matrix

A =

[

−1 3
2 0

]

.

Solution: Given A, |A− λI| = λ2 + λ− 6
set
= 0. It follows that λ1 = −3 and λ2 = 2. We can

then set up the equation Axi = λixi or (A− λiI)xi = 0 for i ∈ {1, 2}. Specifically, we have
[

2 3
2 3

] [

x1
x2

]

=

[

0
0

]

and

[

−3 3
2 −2

] [

x1
x2

]

=

[

0
0

]

,

which results in

x1 =

[

3
−2

]

and x2 =

[

1
1

]

or a multiple thereof.

Theorem 2.4.2. Let A be a k × k matrix with eigenvalues λ1, . . . , λk. Then,

(a) λ1 + λ2 + ...+ λk = tr(A) and

(b) λ1 · λ2 · · · λk = det (A).

Proof. Consider the case for 2 × 2 matrices. Assume A =

[

a11 a12
a21 a22

]

, then |A − λI| = λ2 −
(a11 + a22)λ+ (a11a22 − a12a21), so that the characteristic equation is

p(λ) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21)

= λ2 − tr(A)λ+ det(A).

If λ1 and λ2 are the roots of this polynomial, we can rewrite the solution as

p(λ) = β(λ1 − λ)(λ2 − λ)

= βλ2 − β(λ1 + λ2)λ+ βλ1λ2,

for some constant β. Comparing the two expressions, we find that β = 1 and

tr(A) = β(λ1 + λ2),

det(A) = βλ1λ2.

The theorem naturally extends to higher dimensional cases.
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2.4.1 Properties of Eigenvalues and Eigenvectors

(a) Eigenvalues and eigenvectors are defined only for square matrices.

(b) A square matrix A is singular if and only if 0 is an eigenvalue. However, the zero vector

cannot be an eigenvector.

(c) A matrix is invertible if and only if none of its eigenvalues is equal to zero.

(d) Every eigenvalue has an infinite number of eigenvectors associated with it, as any nonzero

scalar multiple of an eigenvector is also an eigenvector.

(e) The entries of a diagonal matrix D are eigenvalues of D.

(f) The eigenvalues of A and AT are the same (as their characteristic polynomials are the same),

but there is no simple relationship between their eigenvectors.

(g) The eigenvalues of a shifted matrix A − αI are λ − α and the eigenvectors are the same as

those of A since

Ax = λx ⇒ (A− αI)x = (λ− α)x.

(h) The eigenvalues of A−1 are 1/λ and the eigenvectors are the same as those of A since

Ax = λx ⇒ A−1x = λ−1x.

(i) The eigenvalues of A2 are λ2, and the eigenvectors are the same as those of A since

Ax = λx ⇒ A2x = A(λx) = λ(Ax) = λ2x.

This property naturally generalizes to high-order powers (i.e. the eigenvalues of Ak are λk).

(j) Let x be the eigenvector of an n× n matrix A with eigenvalue λ. Then, the eigenvalue of

αkA
k + αk−1A

k−1 + · · ·+ α1A+ α0I

associated with eigenvector x is

αkλ
k + αk−1λ

k−1 + · · ·+ α1λ+ α0,

where αk, αk−1, . . . , α1, α0 are real numbers and k is a positive integer.

2.4.2 Definiteness and Eigenvalues

Definition 2.4.2. Let A be an n× n symmetric matrix. Then,

(a) A is positive definite if and only if all of its eigenvalues are strictly positive (λi > 0 ∀i)

(b) A is negative definite if and only if all of its eigenvalues are strictly negative (λi < 0 ∀i)

(c) A is positive semi-definite if and only if all of its eigenvalues are nonnegative (λi ≥ 0 ∀i)

(d) A is negative semi-definite if and only if all of its eigenvalues are nonpositive (λi ≤ 0 ∀i)
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Example 2.4.3. If A =

[

1 2
2 1

]

, then ∆1 = 1 > 0, ∆2 = −3 < 0, which implies that A is

indefinite. Or, using eigenvalues, we can solve

det

([

1 2
2 1

]

− λI

)

= λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0

which implies λ1 = −1 and λ2 = 3, and hence indefiniteness.

Example 2.4.4. If A =

[

−1 1
1 −1

]

, then ∆1 = −1 < 0,∆2 = 0 ≤ 0 and also B
(2)
1 = −1 < 0.

Thus, A is negative semi-definite. Alternatively, using eigenvalues

det

([

−1 1
1 −1

]

− λI

)

= λ(2 + λ) = 0,

which implies λ1 = 0 and λ2 = −2 and fulfills the condition for negative semi-definiteness.

Example 2.4.5. If A =





1 0 −1
0 3 0
−1 0 4



, then ∆1 = 1 > 0,∆2 =

∣

∣

∣

∣

1 0
0 3

∣

∣

∣

∣

= 3 > 0 and ∆3 = 9 > 0,

which implies A is positive definite. Alternatively, using eigenvalues,

det









1− λ 0 −1
0 3− λ 0
−1 0 4− λ







 = (3− λ)(λ2 − 5λ+ 3) = 0,

which implies λ1,2 = (5±
√
13)/2 and fulfills the condition for positive definiteness.
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Chapter 3

Advanced Topics in Linear Algebra

In this chapter, we will look at linear algebra more from a transformational viewpoint than system

of equations viewpoint (e.g., function from one vector space to another).

3.1 Vector Spaces and Subspaces

Definition 3.1.1 (Vector Space). A vector space (or a linear space) V over a field F consists of a

set on which two operations (called addition and scalar multiplication) are defined so that for each

pair of elements x, y in V there is a unique element x + y in V , and for each element a in F and

each element x in V there is a unique element ax in V , such that the following conditions hold:

(VS 1) For all x,y in V , x+ y = y + z (commutativity of addition).

(VS 2) For all x,y, z in V , (x+ y) + z = x+ (y + z) (associativity of addition).

(VS 3) There exists an element in V denoted by 0 such that x+ 0 = x for each x in V .

(VS 4) For each element x in V there exists an element y in V such that x+ y = 0.

(VS 5) For each element x in V , 1x = x.

(VS 6) For each pair of elements a, b in F and each element x in V , (ab)x = a(bx).

(VS 7) For each element a in F and each pair of elements x,y in V , a(x+ y) = ax+ ay.

(VS 8) For each pair of elements a, b in F and each element x in V , (a+ b)x = ax+ bx

The elements of the field F are called scalars and the elements of the vector space V are called

vectors. The following are examples of vector spaces:

1. An object of the form (a1, a2, . . . , an), where the entries ai, i = {1, . . . , n} are elements

from a field F , is called an n-tuple with entries from F . The set of all n-tuples with entries

from F is a vector space, denoted Fn, under the operations of coordinate-wise addition and

scalar multiplication; that is, if u = (a1, a2, . . . , an) ∈ Fn, v = (b1, b2, . . . , bn) ∈ Fn and

c ∈ F , then

u+ v = (a1 + b1, a2 + b2, . . . , an + bn) and cu = (ca1, ca2, . . . , can).
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2. The set of all m×n matrices with entries from a field F is a vector space, denoted Mm×n(F ),
under the following operations of addition and scalar multiplication: For A,B ∈ Mm×n(F )
and c ∈ F

(A+B)ij = Aij +Bij and (cA)ij = cAij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

3. Let S be any nonempty set and F be any field, and let F(S,F ) denote the set of functions

from S to F . The set F(S,F ) is a vector space under the operations of addition and scalar

multiplication defined for f, g ∈ F(S,F ) and c ∈ F by

(f + g)(s) = f(s) + g(s) and (cf)(s) = c[f(s)]

for each s ∈ S. Note that these are the familiar operations of addition and scalar multiplica-

tion for the functions used in algebra and calculus.

4. Let S = {(a1, a2) : a1, a2 ∈ R}. For (a1, a2), (b1, b2) ∈ S and c ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2 − b2) and c(a1, a2) = (ca1, ca2).

Since (VS 1), (VS 2), and (VS 8) fail to hold, S is not a vector space under these operations.

Theorem 3.1.1 (Cancelation Law for Vector Addition). If x, y, and z are elements of a vector space

V such that x+ z = y + z, then x = y.

Proof. There exists an element v in V such that z+ v = 0 by (VS 4). Thus,

x = x+ 0 = x+ (z+ v) = (x+ z) + v

= (y + z) + v = y + (z+ v)

= y+ 0 = y

by (VS 2) and (VS 3).

Corollary 3.1.1. V has exactly one zero vector

Proof. By (VS 3), there exists 0 ∈ V such that x + 0 = x, for all x ∈ V . Now suppose that

x+ z = x, for all x ∈ V . Then x+ 0 = x+ z, which implies 0 = z by Theorem 3.1.1.

Corollary 3.1.2. For each x ∈ V , there is exactly one vector y so that x+ y = 0.

Proof. Suppose x+ z = 0 = x+ y. Then z = y by Theorem 3.1.1. This means there is only one

additive inverse to x. Thus, we say y = −x.

Theorem 3.1.2. In any vector space V the following statements are true:

(a) 0x = 0 for each x ∈ V .

(b) (−a)x = −(ax) = a(−x) for each a ∈ F and each x ∈ V .

(c) a0 = 0 for each a ∈ F .

Theorem 3.1.3 (Subspace). Let V be a vector space and W a subset of V . Then W is a subspace

of V if and only if the following three conditions hold for the operations defined in V :
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(a) 0 ∈ W .

(b) x+ y ∈ W whenever x ∈ W and y ∈ W .

(c) cx ∈ W whenever c ∈ F and c ∈ W .

This theorem provides a simple method for determining whether or not a given subset of a vector

space is a subspace. The following are examples of subspaces:

1. An n × n matrix M is called a diagonal matrix if Mij = 0 whenever i 6= j. Define V =
Mn×n(R) and W = {A ∈ Mn×n : Aij = 0 whenever i 6= j}. Clearly, the zero matrix is a

diagonal matrix because all of its entries are 0 and hence belongs to W . Moreover, if A and

B are diagonal n× n matrices, then whenever i 6= j

(A+B)ij = Aij +Bij = 0 + 0 = 0 and (cA)ij = cAij = c0 = 0

for any scalar c. Hence A+B and cA are diagonal matrices for any scalar c and also belong

to W . Therefore the set of diagonal matrices, W , is a subspace of V = Mn×n(F ).

2. The transpose At of an m×n matrix A is the n×m matrix obtained from A by interchanging

the rows with the columns; that is, (At)ij = Aji. A symmetric matrix is a matrix A such that

At = A. Define V = Mn×n(R) and W = {A ∈ Mn×n : At = A}. The zero matrix is equal

to its transpose and hence belongs to W . Let A,B ∈ W and c ∈ R, then

(cA+B)t = (cA)t +Bt = cAt +Bt = cA+B.

Thus, cA+B ∈ W and W is a subspace of V .

3. Let A ∈ Mn×n(R). Define W = {x ∈ Mn×1(R) : Ax = 0} ⊆ Mn×1(R) = V . Since

A0 = 0, 0 ∈ W . Also, for any x1,x2 ∈ W and c ∈ R

A(cx1 + x2) = cAx1 +Ax2 = 0.

Thus, cx1 +x2 ∈ W and W is a subspace of V . This W is referred to as the null space of A.

4. The set of matrices in Mn×n(R) having nonnegative entries is not a subspace of Mn×n(R)
because it is not closed under scalar multiplication.

Theorem 3.1.4. Any intersection of subspaces of a vector space V is a subspace of V

Proof. Let C be a collection of subspaces of V , and let W =
⋂

U denote the intersection of the

subspaces in C. Since every subspace contains the zero vector, 0 ∈ W . Let a ∈ F and x,y ∈ W .

Then x,y ∈ U for all U ∈ C. Thus, cx + y ∈ U for all U ∈ C. Hence, ax + y ∈ W and W is a

subspace of V .

3.2 Linear Combinations and Spanning Conditions

Definition 3.2.1 (Linear Combination). Let V be a vector space and S a nonempty subset of V . A

vector v ∈ V is called a linear combination of elements of S if there exist a finite number of elements

u1, u2, . . . , un in S and scalars a1, a2, . . . , an in F such that v = a1u1 + a2u2 + · · ·+ anun.
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Example 3.2.1. Claim: 2x3 − 2x2 + 12x− 6 is a linear combination of

x3 − 2x2 − 5x− 3 and 3x3 − 5x2 − 4x− 9

in P3(R). To show this, find scalars a and b such that

2x3 − 2x2 + 12x− 6 = a(x3 − 2x2 − 5x− 3) + b(3x3 − 5x2 − 4x− 9)

= (a+ 3b)x3 + (−2a− 5b)x2 + (−5a− 4b)x+ (3a − 9b).

Equating coefficients









1 3 2
−2 −5 −2
−5 −4 12
−3 −9 −6









rref∼









1 0 −4
0 1 2
0 0 0
0 0 0









Thus a = −4 and b = 2, which proves that 2x3 − 2x2 + 12x − 6 is a linear combination of

x3 − 2x2 − 5x− 3 and 3x3 − 5x2 − 4x− 9.

Definition 3.2.2 (Span). Let S be a nonempty subset of a vector space V . The span of S, denoted

span(S), is the set consisting of all linear combinations of the elements of S. For convenience we

define span(∅) = {0}.

In R3, for instance, the span of the set {(1, 0, 0), (0, 1, 0)} consists of all vectors in R3 that

have the form a(1, 0, 0) + b(0, 1, 0) = (a, b, 0) for some scalars a and b. Thus the span of

{(1, 0, 0), (0, 1, 0)} contains all the points in the xy-plane. In this case, the span of the set is a

subspace of R3. This fact is true in general.

Theorem 3.2.1. The span of any subset S of a vector space V is a subspace of V . Moreover, any

subspace of V that contains S must also contain the span of S.

Proof. This result is immediate if S = ∅ because span(∅) = {0}, which is a subspace that is

contained in any subspace of V .

If S 6= ∅, then S contains an element z and 0z = 0 is an element of span(S). Let x,y ∈
span(S). Then there exists elements u1,u2, . . . ,um,v1,v2 . . . ,vn in S and scalars a1, a2, . . . , am
and b1, b2, . . . , bn such that

x = a1u1 + a2u2 + · · ·+ amum and y = b1v1 + b2v2 + · · · + bmvm.

Then

x+ y = a1u1 + a2u2 + · · ·+ amum + b1v1 + b2v2 + · · ·+ bmvm

and, for any scalar c,

cx = (ca1)u1 + (ca2)u2 + · · ·+ (cam)um

are clearly linear combinations of the elements of S; so x + y and cx are elements of span(S).
Thus, span(S) is a subspace of V .

Now let W denote any subspace of V that contains S. If w ∈ span(S), then w has the form w =
c1w1+c2w2+· · ·+ckwk for some elements w1,w2, . . . ,wk ∈ W and some scalars c1, c2, . . . , ck.

Since S ⊆ W , we have w1,w2, . . . ,wk ∈ W in W . Therefore w = c1w1 + c2w2 + · · ·+ ckwk is

an element of W (since W is a subspace of V , it is closed under addition and scalar multiplication).

Since w, an arbitrary element of span(S), belongs to W , it follows that span(S) ⊆ W .
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Example 3.2.2. Suppose V = R3 and S = {(0,−2, 2), (1, 3,−1)}. Is (3, 1, 5) ∈ span(S). To

answer this question, try to find constants a and b so that

a(0,−2, 2) + b(1, 3,−1) = (3, 1, 5).

Equating coefficients





0 1 3
−2 3 1
2 −1 5





rref∼





1 0 4
0 1 3
0 0 0





Thus a = 4 and b = 3, which proves that (3, 1, 5) ∈ span(S).

Definition 3.2.3. A subset S of a vector space V generates (or spans) V if span(S) = V . In this

situation we may also say that the elements of S generate (or span) V .

Example 3.2.3.

1. Let V = Rn and S = {e1, e2, . . . , en}, where ej denotes a vector whose jth coordinate is 1

and whose other coordinates are 0. Since x = (x1, x2, . . . , xn) ∈ Rn can be written

x = x1(1, 0, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + · · ·+ xn(0, 0, . . . , 0, 1)

=

n
∑

k=1

xkek ∈ span(S).

Hence S = Rn and S generates Rn.

2. Let V = Pn(R) = {a0 + a1x + · · · + anx
n : each ak ∈ R} and S = {1, x, x2, . . . , xn}.

Clearly span(S) ∈ Pn(R). Also, for any p(x) ∈ Pn(R)

p(x) = a0 + a1x+ · · · + anx
n

= a0(1) + a1(x) + · · · + an(x
n) ∈ span(S).

Hence S = Pn(R) and S generates Pn(R).

3. Let V = M2×2(R) and

S =

{[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

.

Since

A =

[

a11 a12
a21 a22

]

= a11

[

1 0
0 0

]

+ a12

[

0 1
0 0

]

+ a21

[

0 0
1 0

]

+ a22

[

0 0
0 1

]

∈ span(S)

and A ∈ M2×2(R), S generates M2×2(R).

4. Let V = R3 and S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Let x ∈ span(S). Then for a, b, c ∈ R

x = a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = (a+ b, a+ c, b+ c) ∈ R3.

Thus, span(S) ⊆ R3. Now let x = (x1, x2, x3) ∈ R3, then we must find a, b, c ∈ R
satisfying

a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = (x1, x2, x3).
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Equating coefficients




1 1 0 x1
1 0 1 x2
0 1 1 x3





rref∼





1 0 0 (x1 + x2 − x3)/2
0 1 0 (x1 − x2 + x3)/2
0 0 1 (x2 + x1 + x3)/2



 ,

which is consistent. Hence x ∈ span(S), R3 ⊆ span(S), and S generates R3.

3.3 Linear Independence and Linear Dependence

Definition 3.3.1 (Linear Dependence). A subset S of a vector space V is called linearly dependent

if there exist a finite number of distinct vectors u1,u2, . . . ,un in S and scalars a1, a2, . . . , an, not

all zero, such that

a1u1 + a2u2 + · · ·+ anun = 0.

In this case we say that the elements of S are linearly dependent.

For any vectors u1,u2, . . . ,un we have a1u1 + a2u2 + · · · + anun = 0 if a1 = a2 = · · · =
an = 0. We call this the trivial representation of 0 as a linear combination of u1,u2, . . . ,un. Thus

for a set to be linearly dependent means that there is a nontrivial representation of 0 as a linear

combination of vectors in the set. Consequently, any subset of a vector space that contains the

zero vector is linearly dependent, because 0 = 1 · 0 is a nontrivial representation of 0 as a linear

combination of vectors in the set.

Definition 3.3.2 (Linear Independence). A subset S of a vector space that is not linearly dependent

is called linearly independent. As before we also say that the elements of S are linearly independent.

The following facts about linearly independent sets are true in any vector space.

1. The empty set is linearly independent, for linearly dependent sets must be nonempty.

2. A set consisting of a single nonzero vector is linearly independent. For if {u} is linearly

dependent, the au = 0 for some nonzero scalar a. Thus

u = a−1(au) = a−10 = 0.

3. A set is linearly independent if and only if the only representations of 0 as linear combinations

of its elements are trivial representations.

The condition in 3 provides a useful method for determining if a finite set is linearly independent.

This technique is illustrated in the following example.

Example 3.3.1. Determine whether the following sets are linearly dependent or linearly indepen-

dent.

1. In P2(R), let S = {3 + x+ x2, 2− x+ 5x2, 4− 3x2}. Consider the equation:

a(3 + x+ x2) + b(2− x+ 5x2) + c(4− 3x2) = (3a+ 2b+ 4c) + (a− b)x+ (a+ 5b− 3c)x2 = 0

for all x. Equating coefficients




3 2 4
1 −1 0
1 5 −3





rref∼





1 0 0
0 1 0
0 0 1



 .

Thus, the only solution is a = b = c = 0, which implies that S is linearly independent in

P2(R).
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2. In M2×2(R), let

S =

{(

1 −3
−2 4

)

,

(

−2 6
4 8

)}

.

Consider the equation:

a

(

1 −3
−2 4

)

+ b

(

−2 6
4 8

)

=

(

a1 − 2a2 −3a1 + 6a2
−2a1 + 4a2 4a1 − 8a2

)

=

(

0 0
0 0

)

.

Equating coefficients









1 −2
−3 6
−2 4
4 −8









rref∼









1 −2
0 0
0 0
0 0









,

which implies that a = 2b. Therefore, there are infinitely many nontrivial solutions and so S

is linearly dependent in M2×2(R).

3.4 Bases and Dimension

Definition 3.4.1 (Basis). A basis β for a vector space V is a linearly independent subset of V that

generates V (i.e. β is linearly independent and span(β) = V ).

Theorem 3.4.1. let V be a vector space and β = {u1,u2, . . . ,un} be a subset of V . Then β is a

basis for V if and only if each vector v can be uniquely expressed as a linear combination of vectors

in β, that is, can be expressed in the form

v = a1u1 + a2u2 + · · · + anun

for unique scalars a1, a2, . . . , an.

Proof. First let β be a basis for V . If v ∈ V , then v ∈ span(β) because span(β) = V . Thus v is a

linear combination of the elements in β. Suppose that

v = a1u1 + a2u2 + · · ·+ anun and v = b1u1 + b2u2 + · · ·+ bnun

are two such representations of v. Subtracting the second equation from the first gives

(a1 − b1)u1 + (a2 − b2)u2 + · · ·+ (an − bn)un.

Since β is linearly independent, it follows that a1 − b1 = a2 − b2 = · · · = an − bn = 0. Hence

a1 = b1, a2 = b2, . . . , an = bn and so v is uniquely expressible as a linear combination of the

elements in β.

Now let every v ∈ V can be uniquely expressed as a linear combination of vectors in β. Note

first that β is trivially a generating set for V , since we are told each v ∈ V is also in span(β). Since

v = a1u1+a2u2+ · · ·+anun = b1u1+b2u2+ · · ·+bnun, ai = bi for each i such that 1 ≤ i ≤ n,

otherwise each v ∈ V would not be uniquely expressible as a linear combination of vectors from

β. This implies that ai − bi = 0 for each i, proving that β is linearly independent. β is therefore a

basis for V .
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Example 3.4.1.

1. Since span(∅) = {0} and ∅ is linearly independent, ∅ is a basis for the vector space {0}.

2. In Fn, {e1, e2, . . . , en}, where ej denotes a vector whose jth coordinate is 1 and whose other

coordinates are 0 is a basis for Fn and is called the standard basis.

3. In Mm×n(F ), let M ij denote the matrix whose only nonzero entry is a 1 in the ith row and

jth column. Then {M ij : 1 ≤ i ≤, 1 ≤ j ≤ n} is a basis for Mm×n(F ).

4. In Pn(F ) the set {1, x, x2, . . . , xn} is a basis. We call this basis the standard basis for Pn(F ).

5. In P (F ) the set {1, x, x2, . . .} is a basis.

Theorem 3.4.2 (Extraction). If a vector space V is generated by a finite set S, then some subset of

S is a basis for V . Hence V has a finite basis.

Proof. If S = ∅ or S = {0}, then V = {0} and ∅ is a subset of S that is a basis for V . Otherwise

suppose there exists u1 ∈ S and u1 6= 0. Define S1 = {u1}. Then S1 ⊆ S and S1 is independent.

If span(S1) = V , we are done. If not, then there exists a u2 ∈ S where u2 6∈ span(S1). Define

S2 = S1 ∪ {u2}. Then S2 is independent. If span(S2) = V , we are done. If not,. . ., then there

a um ∈ S where um 6∈ span(Sm−1). Define Sm = Sm−1 ∪ {um}. Then Sm is independent. If

k > m and uk ∈ S, then u ∈ span(Sm). Thus span(Sm) = V and Sm ⊆ S is a basis for V .

Example 3.4.2. Find a basis for the following sets:

1. Let V = R3 and S = {(2,−1, 4), (1,−1, 3), (1, 1,−1), (1,−2, 1)}. Let x = (x1, x2, x3) ∈
R3, then we must find a, b, c, d ∈ R satisfying

a(2,−1, 4) + b(1,−1, 3) + c(1, 1,−1) + d(1,−1, 1) = (x1, x2, x3).

Equating coefficients





2 1 1 1
−1 −1 1 −2
4 3 −1 1





rref∼





1 0 2 0
0 1 −3 0
0 0 0 1



 ,

which is consistent for all x. Hence x ∈ span(S) and S generates R3. By Theorem 3.4.2,

S \ {(1, 1,−1)} is a basis for R3.

2. Let V = M2×2(R) and

S =

{[

1 2
2 1

]

,

[

2 1
1 2

]

,

[

1 5
5 1

]

,

[

2 3
3 1

]

,

[

1 2
3 2

]}

.

Form the coefficient matrix








1 2 1 2 1
2 1 5 3 2
2 1 5 3 3
1 2 1 1 2









rref∼









1 0 3 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 1









,

which is consistent. Hence span(S) = M2×2(R). By Theorem 3.4.2, S \ {S3} is a basis for

M2×2(R).
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3. Let V = P2(R) and S = {1+x, 1−x, 1+x+x2 , 1−x+x2, x+x2}. Form the coefficient

matrix




1 1 1 1 0
1 −1 1 −1 1
0 0 1 1 1





rref∼





1 0 0 −1 −1/2
0 1 0 1 −1/2
0 0 1 1 1



 ,

which is consistent. Hence span(S) = P2(R). By Theorem 3.4.2, S \ {1 − x+ x2, x+ x2}
is a basis for P2(R).

Theorem 3.4.3. Let β = {v1,v2, . . . ,vn} be a basis for V and suppose S = {u1,u2, . . . ,um} ⊆
V . If m = |S| > n = |β|, then S is dependent.1 .

Proof. For each uj , 1 ≤ j ≤ m, there exist unique scalars aij , 1 ≤ i ≤ n so that

uj = a1jv1 + a2jv2 + · · · + anjvn =

n
∑

i=1

aijvi

If we form
∑m

j=1 xjuj = 0, then

m
∑

j=1

xj

(

n
∑

i=1

aijvi

)

=
n
∑

i=1





m
∑

j=1

aijxj



vi = 0

Since β is independent
∑

j = 1maijxj = 0 for each 1 ≤ i ≤ n. Set

A =







a11 a12 · · · a1m
...

...
. . .

...

an1 an2 · · · anm






X =







x1
...

xm






.

Then AX = 0. Since m > n, we will always have at least one free variable and so some xj 6= 0.

Thus S is dependent.

Definition 3.4.2. A vector space is called finite-dimensional if it has a basis consisting of a finite

number of elements. The unique number of elements in each basis for V is called the dimension of

V and is denoted dim(V ). A vector space that is not finite-dimensional is call infinite-dimensional.

Example 3.4.3.

1. dim(Fn) = n

2. dim(Pn) = n+ 1 (note the constant term)

3. dim(Mm×n) = mn

4. dim({0}) = 0

5. dim(P ) = ∞

Corollary 3.4.1. Let V be a vector space, dim(V ) = n < ∞, and S ⊆ V . If |S| < n, then

span(S) 6= V .

1For any set S, |S| corresponds to the number of vectors in S.
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Proof. Suppose span(S) = V . and |s| < n. By Theorem 3.4.2, there exists β ⊆ S so that β is a

basis for V . Then n = |β| ≤ |s| < n, which is a contradiction.

Remark 3.4.1. Let V be a vector space, dim(V ) = n < ∞, and S ⊆ V . Then the these results

directly follow from earlier results:

1. If S is independent, then |S| ≤ dim(V ) (contrapositive of Theorem 3.4.3).

2. If S generates V (span(S) = V ), then |S| ≥ dim(V ) (contrapositive of Corollary 3.4.1).

Corollary 3.4.2. Let V be a vector space, dim(V ) = n < ∞, S ⊆ V , and |S| = dim(V ). Then

1. If span(S) = V , then S is a basis for V .

2. If S is linearly independent, then S is a basis for V .

Proof.

1. Since span(S) = V , by Theorem 3.4.2 there exists β ⊆ S so β is a basis for V . Thus,

|β| = dim(V ) = |S| and so β = S.

2. On the contrary, suppose span(S) 6= V . Then there exists v ∈ V so v 6∈ span(S). Hence

S ∪ {v} is independent. This, however is a contradiction to Theorem 3.4.3, which says that

if |S ∪ {v}| > dim(V ), then S ∪ {v} is dependent. Therefore span(S) = V and so S is a

basis.

Example 3.4.4. Do the polynomials x32x2 + 1, 4x2x + 3, and 3x2 generate P3(R)? No, since

|S| < dim(R3), span(S) 6= P3 (Corollary 3.4.1).

Example 3.4.5. Determine whether S = {(1, 0,−1), (2, 5, 1), (0,−4, 3)} form a basis for R3.

Since |S| = 3 = dim(R3), it is sufficient to show that S is linearly independent (Corollary 3.4.2).

Equating coefficients




1 2 0
0 5 −4
−1 1 3





rref∼





1 0 0
0 1 0
0 0 1



 .

Hence S is linearly independent and forms a basis for R3.

Example 3.4.6. Find a basis for the following subspaces of F 5:

W = {(a1, a2, a3, a4, a5) ∈ F 5 : a1 − a3 − a4 = 0}.
What is the dimensions of W ? (a1, a2, a3, a4, a5) ∈ W1 if and only if (a1, a2, a3, a4, a5) =
(s, t, r, t, 2s) for some r, s, t ∈ R. Thus, a spanning set for W1 is

β = {(0, 0, 1, 0, 0), (1, 0, 0, 0, 2), (0, 1, 0, 1, 0)}.
Since













0 1 0
0 0 1
1 0 0
0 0 1
0 2 0













rref∼













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0













,

the spanning set, β, is linearly independent and thus forms a basis for W . The dim(W ) = 4.
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3.5 Linear Transformations

In the previous sections, we developed the theory of abstract vector spaces in detail. It is now natural

to consider those functions defined on vector spaces that in some sense “preserve” the structure.

These special functions are called linear transformations.

Definition 3.5.1 (Linear Transformation). Let V and W be vector spaces over F . We call a function

T : V → W a Linear Transformation from V into W if for all x,y ∈ V and c ∈ F we have

(a) T (x+ y) = T (x) + T (y)

(b) T (cx) = cT (x)

Theorem 3.5.1. The following are basic facts about the function T : V → W :

1. If T is linear, then T (0) = 0.

2. T is linear if and only if T (x− y) = T (x)− T (y).

3. T is linear if and only if T (cx+ y) = cT (x) + T (y) for all x,y ∈ V and c ∈ F .

4. T is linear if and only if for x1, . . . , xn ∈ V and a1 . . . , an ∈ F we have

T

(

n
∑

i=1

aixi

)

=
n
∑

i=1

aiT (xi)

Proof. Let T : V → W be linear. Clearly T (0) = 0, for otherwise by linearity T (0) = T (x +
(x)) = T (x) + T (x) = T (x) + (T (x)) 6= 0, which is absurd. Also note that since T is linear,

T (cx+y) = T (cx)+T (y) = cT (x)+T (y), and T (x−y) = T (x+(−y)) = T (x)+T (−y) =
T (x)T (y). To prove property 4, note that if T is linear, an inductive argument can be used to show

that for all x1, . . . ,xn ∈ V and a1, . . . , an ∈ F , we have

T

(

n
∑

i=1

aixi

)

=

n
∑

i=1

T (aixi) =

n
∑

i=1

aiT (xi)

Now, assume T (cx + y) = cT (x) + T (y) for all x,y ∈ V and c ∈ F . Let x,y ∈ V . Then we

obtain T (x + y) = T (1x + y) = 1 · T (x) + T (y) = T (x) + T (y). Next, let x ∈ V and c ∈ F .

Then we obtain T (cx) = T (cx + 0) = c · T (x) + T (0) = c · T (x). This proves T is linear. The

same type of reasoning can be used to show that if T satisfies

T

(

n
∑

i=1

aixi

)

=

n
∑

i=1

aiT (xi),

then T must be linear.

Example 3.5.1. Given A ∈ Mm×n(F ), define LA : Mn×1 → Mm×1(F ) by LA(x) = Ax. To see

that this is a linear transformation, note that for any x,y ∈ Mn×1 and any c ∈ R

LA(cx+ y) = A(cx+ y) = c(Ax) +Ay = cLA(x) + LA(y).
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Example 3.5.2. Define T : R2 → R2 by T (a1, a2) = (2a1 + a2, a1). To show that T is linear, let

c ∈ R and x,y ∈ R2, where x = (b1, b2) and y = (d1, d2). Since

cx+ y = (cb1 + d1, cb2 + d2),

we have

T (cx+ y) = (2(cb1 + d1) + cb2 + d2, cb1 + d1).

Also

cT (x) + T (y) = c(2b1 + b2, b1) + (2d1 + d2, d1)

= (2cb1 + cb2 + 2d1 + d2, cb1 + d1)

= (2(cb1 + d1) + cb2 + d2, cb1 + d1).

Thus T is linear.

Example 3.5.3. Define T : Pn(R) → Pn−1(R) by T (f) = f ′, where f ′ denotes the derivative of

f . To show that T is linear, let g and h be vectors in Pn(R) and a ∈ R. Then

T (ag + h) = (ag + h)′ = ag′ + h′ = aT (g) + T (h).

Thus T is linear.

We now turn our attention to two very important sets associated with linear transformations:

the range and null space. The determination of these sets allows us to examine more closely the

intrinsic properties of linear transformations.

Definition 3.5.2 (Null Space and Range). Let V and W be vector spaces and let T : V → W be

linear. We define the null space (or kernel) N(T ) of T to be the set of all vectors x in V such that

T (x) = 0; that is, N(T ) = {x ∈ V : T (x = 0)}.

We define the range (or image) R(T ) of T to be the subset of W consisting of all images (under

T ) of elements of V ; that is R(T ) = {T (x) : x ∈ V }.

Definition 3.5.3 (Nullity and Rank). Let V and W be vector spaces and let T : V → W be linear.

If N(T ) and R(T ) are finite-dimensional, then we define the nullity of T , denoted nullity(T ), and

the rank of T , denoted rank(T ), to be the dimensions of N(T ) and R(T ), respectively.

As a illustration of these definitions, consider the following figure:

V W
T

N(T)

R(T)

0
W

0
V

The next theorem provides a method for finding a spanning set for the range of a linear trans-

formation. With this accomplished, a basis for the range is easy to discover.
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Theorem 3.5.2. Let V and W be vector spaces, and let T : V− → W be linear. If β =
{v1, . . . ,vn} is a finite basis for V , then

R(T ) = span({T (v1), . . . , T (vn)}).

Proof. Clearly T (vi) ∈ R(T ) for each i. Because R(T ) is a subspace of V that contains the set

{T (v1), . . . , T (vn)}, by Theorem 3.2.1 R(T ) contains span({T (v1), . . . , T (vn)}). Now suppose

that w ∈ R(T ). Then w = T (v) for some v ∈ V . Because β is a basis for V , we have

v =

n
∑

i=1

aivi for some a1, . . . , an ∈ F.

Since T is linear, it follows that

w = T (v) =

n
∑

i=1

aiT (vi) ∈ span(T (β)).

Reflecting on the action of a linear transformation, we see intuitively that the larger the nullity,

the smaller the rank. In other words, the more vectors that are carried into 0, the smaller the range.

The same heuristic reasoning tells us that the larger the rank, the smaller the nullity. The balance

between rank and nullity is made precise in the next theorem.

Theorem 3.5.3 (Dimension Theorem). Let V and W be vector spaces, and let T : V → W be

linear. If V is finite-dimensional, then

nullity(T ) + rank(T ) = dim(V ).

Proof. Suppose that dim(V ) = n, dim(N(T )) = k, and {v1, . . . ,vk} is a basis for N(T ). We may

extend {v1, . . . ,vk} to a basis β = {v1, . . . ,vn} for V . We claim that S = {T (vk+1), . . . , T (vn)}
is a basis for R(T ).

First we prove that S generates R(T ). Using Theorem 3.5.2 and the fact that T (vi) = 0 for

1 ≤ i ≤ k, we have

R(T ) = span({T (vk+1), . . . , T (vn)})

Now we prove that S is linearly independent. Form

n
∑

i=k+1

biT (vi) = 0 for bk+1, . . . , bn ∈ F.

Using the fact that T is linear, we have

T

(

n
∑

i=k+1

bivi

)

= 0 which implies

n
∑

i=k+1

bivi ∈ N(T ).

Hence there exist c1, . . . , ck ∈ F such that

n
∑

i=k+1

bivi =

k
∑

i=1

civi which implies

k
∑

i=1

(−ci)vi +

n
∑

i=k+1

bivi = 0

Since β is a basis for V , we have bi = 0 for all i. Hence S is linearly independent. Notice that this

argument also shows that T (vk+1), . . . , T (vn) are distinct, and hence rank(T ) = n− k.
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Theorem 3.5.4. Let V and W be vector spaces, and let T : V → W be linear. Then T is one-for-

one if and only if N(T ) = {0}.

Proof. First note that T is one-to-one if and only if T (x) = T (y) implies x = y. Suppose N(T ) =
{0} and T (x) = T (y). Since T is linear, T (x − y) = T (x) − T (y) = 0. Thus, x − y ∈ N(T ).
By assumption, N(T ) = {0}. Hence, x − y = 0, which implies x = y. Now assume that T is

injective. Let x ∈ N(T ), then T (x) = 0 = T (0). Hence x = 0, since T is injective.

Example 3.5.4. Let M : M2×3(R) → M2×2(R) defined by

T

(

a11 a12 a13
a21 a22 a23

)

=

(

2a11 − a12 a13 + 2a12
0 0

)

.

For any x,y ∈ M2×3(R) and any c ∈ R

T

(

cx11 + y11 cx12 + y12 cx13 + y13
cx21 + y21 cx22 + y22 cx23 + y23

)

=

(

2(cx11 + y11)− (cx12 + y12) cx13 + y13 + 2(cx12 + y12)
0 0

)

=

(

c(2x11 − x12) c(x13 + 2x12)
0 0

)

+

(

2y11 − y12 y13 + 2y12
0 0

)

= cT

[

x11 x12 x13

x21 x22 x23

]

+ T

(

y11 y12 y13
y21 y22 y23

)

.

To find the null space, we must find an x ∈ M2×3(R) such that

2x11 − x12 = 0 and x13 + 2x12 = 0.

Equating coefficients

[

2 −1 0
0 2 1

]

rref∼
[

1 0 1/4
0 1 1/2

]

.

Thus, N(T ) = {(−r/4,−r/2, r, s, t, u)} for r, s, t, u ∈ R. Hence, a basis for the null space can be

written

βN =

{[

−1/4 −1/2 1
0 0 0

]

,

[

0 0 0
1 0 0

]

,

[

0 0 0
0 1 0

]

,

[

0 0 0
0 0 1

]}

and nullity(T ) = dim(N(T )) = 4. Since

[

2a11 − a12 a13 + 2a12
0 0

]

=

[

2a11 − a12 0
0 0

]

+

[

0 a13 + 2a12
0 0

]

= (2a11 − a12)

[

1 0
0 0

]

+ (a13 + 2a12

[

0 1
0 0

]

,

a basis for the range is given by

βR =

{[

1 0
0 0

]

,

[

0 1
0 0

]}

and rank(T ) = dim(R(T )) = 2. This verifies the dimension theorem, since dim(M2×3(R)) =
6 = 2 + 4. Since nullity(T ) 6= 0, T is not one-to-one. Since rank(T ) = 2 6= dim(M2×3(R)), T is

not onto.
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Example 3.5.5. Let

A =





1 −1 −1 2 1
2 −2 −1 3 3
−1 1 −1 0 −3





and define LA : M5×1 → M3×1 by LA(x) = Ax. To find a basis for N(LA), solve Ax = 0. We

have

A =





1 −1 −1 2 1
2 −2 −1 3 3
−1 1 −1 0 −3





rref∼





1 −1 0 1 2
0 0 1 −1 1
0 0 0 0 0



 .

Thus, N(T ) = (r − s − 2t, r, s − t, s, t) for r, s, t ∈ R. Hence, a basis for the null space can be

written

βN =



































1
1
0
0
0













,













−1
0
1
1
0













,













−2
0
−1
0
1



































and nullity(T ) = dim(N(T )) = 3. In general Ax = b if and only if b is a linear combination of

the columns of A (the column space). Hence

βR =











1
2
−1



 ,





−1
−1
−1











.
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Chapter 4

Concavity, Convexity, Quasi-Concavity,

and Quasi-Convexity

4.1 Convex Sets

Definition 4.1.1 (Convex Set). A set X ∈ Rn is (strictly) convex if given any two points x′ and x′′

in X, the point

xλ = (1− λ)x′ + λx′′

is also in X (int X) for every λ ∈ [0, 1] (λ ∈ (0, 1)).

Remark 4.1.1. A vector of the form xλ = (1 − λ)x′ + λx′′, with λ ∈ [0, 1] is called a convex

combination of x′ and x′′.

Theorem 4.1.1. Let X and Y be convex sets in Rn, and let α be a real number. Then the sets

αX = {z ∈ Rn : z = αx for some x ∈ X} and

X + Y = {z ∈ Rn : z = x+ y for some x ∈ X and y ∈ Y }

are convex.

Proof. Let X and Y be any two convex subsets of Rn. Suppose αx′ and αx′′ are any two points in

αX, naturally with x′ and x′′ in X. Given λ ∈ [0, 1], since X is convex, we know λx′+(1−λ)x′′ ∈
X. Thus,

λ(αx′) + (1− λ)(αx′′) = α[λx′ + (1− λ)x′′] ∈ αX.

Therefore αX is shown to be convex. Now suppose x′ + y′ and x′′ + y′′ are any two points in

X + Y , naturally with x′ and x′′ in X and y′ and y′′ in Y . Given λ ∈ [0, 1], since X and Y are

both convex, we know λx′ + (1− λ)x′′ ∈ X and λy′ + (1− λ)y′′ ∈ Y . Thus,

λ(x′ + y′) + (1− λ)(x′′ + y′′) = λx′ + (1− λ)x′′ + λy′ + (1− λ)y′′ ∈ X + Y

Therefore X + Y is shown to be convex.

Example 4.1.1. Is {(x, y) ∈ R2|y ≥ x ∧ xy ≥ 1} open, closed, compact or convex?

Solution: Not open, since S 6= intS. For example, (1, 1) is in the set, but every neighborhood

around (1, 1) contains points which are not in the set. Closed since the set contains all of its bound-

ary points. Not compact since the set is not bounded [(n, n) is in the set for n ∈ N]. Not convex

since since (1, 1) and (−1,−1) are in the set, but (1/2)(1, 1) + (1/2)(−1,−1) = (0, 0) is not.
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Figure 4.1: Convex and Non-Convex Sets

(a) Strictly Convex (b) Convex, but not Strictly Convex (c) Not Convex

4.2 Concave and Convex Functions

Definition 4.2.1 (Concave Function). The function f : Rn ⊇ X → R, where X is a convex set, is

concave if given any two points x′ and x′′ in X we have

(1− λ)f(x′) + λf(x′′) ≤ f [(1− λ)x′ + λx′′] ≡ f(xλ) ∀λ ∈ [0, 1]

and is strictly concave if the inequality holds strictly for λ ∈ (0, 1), that is, if

∀x′,x′′ ∈ X and λ ∈ (0, 1), (1− λ)f(x′) + λf(x′′) < f [(1− λ)x′ + λx′′] ≡ f(xλ).

Remark 4.2.1. Reversing the direction of the inequalities in the theorem, we obtain the definitions

of convexity and strict convexity.

Many introductory calculus texts call convex functions “concave up” and concave functions

“concave down”, as we did in section 1.1.4. Henceforth, we will stick with the more classical

terms: “convex” and “concave”.

Theorem 4.2.1. Let f : Rn ⊇ X → R be a C1 function defined on an open and convex set X.

Then f is concave if and only if given any two points x and x0 in X, we have

f(x) ≤ f(x0) +∇f(x0)(x− x0).

Moreover, f is strictly concave if and only if the inequality holds strictly, that is, if and only if

f(x) < f(x0) +∇f(x0)(x− x0)

for all pairs of distinct points x0 and x in X.

Remark 4.2.2. This theorem says that a function f is concave if and only if the graph of f lies

everywhere on or below any tangent plane. Equivalently, it says that a function is concave if and

only if the slope of the function at some arbitrary point, say x0 < x, is greater than the slope of the

secant line between points x and x0. Reversing the direction of the inequalities in the theorem, we

obtain a theorem corresponding to convexity and strict convexity.
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Figure 4.2: Concave and Convex Functions

(a) Concave Function (b) Convex Function

Theorem 4.2.2. Let f : Rn ⊇ X → R be a concave function and g : R → R be an increasing and

concave function defined on an interval I containing f(X). Then the function h : X → R defined

by h(x) = g[f(x)] is concave. Moreover, if f is strictly concave and g is strictly increasing then h
is strictly concave. Analogous claims hold for f convex (again with g increasing).

Proof. Consider any x′,x′′ ∈ X and λ ∈ [0, 1]. Since f is concave, we have

f(xλ) ≡ f(λx′ + (1− λ)x′′) ≥ λf(x′) + (1− λ)f(x′′).

Since g is increasing and concave

h(xλ) = g[f(λx′ + (1− λ)x′′)] ≥ g[λf(x′) + (1− λ)f(x′′)]

≥ λg[f(x′)] + (1− λ)g[f(x′′)]

= λh(x′) + (1− λ)h(x′′).

This establishes that h is concave. If f is strictly concave and g is strictly increasing, then the

inequality is strict and hence h is strictly concave.

Example 4.2.1. Let the domain be R++. Consider h(x) = e1/x. Let f(x) = 1/x and let g(y) = ey.

Then h(x) = g[f(x)]. Function f is strictly convex and g is (strictly) convex and strictly increasing.

Therefore, by Theorem 4.2.2, h is strictly convex.

Remark 4.2.3. It is important in Theorem 4.2.2 that g is increasing. To see this, let the domain be

R++. Consider h(x) = e−x2

, which just the standard normal density except that it is off by a factor

of 1/
√
2π. Let f(x) = ex

2

and let g(y) = 1/y. Then h(x) = g[f(x)]. Now, f is convex on R++

and g is also convex on R++. The function h is not, however, convex. While it is strictly convex for

|x| sufficiently large, for x near zero it is strictly concave. This does not contradict Theorem 4.2.2

because g here is decreasing.
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Theorem 4.2.3. Suppose f1, . . . , fn are concave functions where fi : Rn ⊇ X → R. Then for any

α1, . . . , αn for which each αi ≥ 0, f ≡ ∑n
i=1 αifi is also a concave function. If, in addition, at

least one fj is strictly concave and αj > 0, then f is strictly concave.

Proof. Consider any x′,x′′ ∈ X and λ ∈ [0, 1]. If each fi is concave, we have

fi(x
λ) ≡ fi(λx

′ + (1− λ)x′′) ≥ λfi(x
′) + (1− λ)fi(x

′′)

Therefore,

f(xλ) ≡ f(λx′ + (1− λ)x′′) =
n
∑

i=1

αifi(λx
′ + (1− λ)x′′) ≥

n
∑

i=1

αi[λfi(x
′) + (1− λ)fi(x

′′)]

= λ

n
∑

i=1

αifi(x
′) + (1− λ)

n
∑

i=1

αifi(x
′′) ≡ λf(x′) + (1− λ)f(x′′).

This establishes that f is concave. If some fj is strictly concave and αj > 0, then the inequality is

strict.

4.3 Concavity, Convexity, and Definiteness

The following result says that a function is concave if and only if its Hessian is negative semi-

definite everywhere. A twice-differentiable function of a single variable is concave (convex) if and

only if f ′′(x) ≤ (≥)0 everywhere.

Theorem 4.3.1. Let f be a C2 function on an open convex set X of Rn. Then

(a) If H(f) is negative definite for every x ∈ X, then f is strictly concave.

(b) If H(f) is negative semi-definite for every x ∈ X, then f is concave.

(c) If f is concave, then H(f) is negative semi-definite for every x ∈ X.

(d) If H(f) is positive definite for every x ∈ X, then f is strictly convex.

(e) If H(f) is positive semi-definite for every x ∈ X, then f is convex.

(f) If f is convex, then H(f) is positive semi-definite for every x ∈ X.

Remark 4.3.1. Note that if f is strictly concave, the Hessian can either be negative semi-definite

or negative definite. Thus, if you show that the Hessian is not negative definite, but only negative

semi-definite, you cannot conclude that f is not strictly concave.

Example 4.3.1. The Hessian of the function f(x, y) = x4 + x2y2 + y4 − 3x− 8y is

H(f) =

[

12x2 + 2y2 4xy
4xy 2x2 + 12y2

]

.

The principle minors, B
(1)
1 = 12x2 + 2y2, B

(2)
1 = 2x2 + 12y2, and B2 = 24x4 + 132x2y2 + 24y4

are all weakly positive for all values of x and y, so f is a convex function on all Rn.
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Example 4.3.2. A simple utility or production function is f(x, y) = xy. Its Hessian is

H(f) =

[

0 1
1 0

]

,

whose second order principle minor is detH(f) = −1. Since this second order principle minor is

negative, H(f) is indefinite and f is neither concave nor convex.

Example 4.3.3. Consider the monotonic transformation of the function f in the previous example

by the function g(z) = z1/4 : g[f(x, y)] = x1/4y1/4, defined only on the positive quadrant R2
+. The

hessian of g is

H(g) =

[

− 3
16x

−7/4y1/4 1
16x

−3/4y−3/4

1
16x

−3/4y−3/4 − 3
16x

1/4y−7/4

]

.

The first order principle minors are both non-positive and the second order principle minor, x−3/2y−3/2/32,

is non-negative. Therefore, H(g) is negative semi-definite on R2
+ and G is a concave function on

R2
+.

4.4 Quasi-concave and Quasi-convex Functions

Definition 4.4.1 (Quasi-concavity and Quasi-convexity). Let f : Rn ⊇ X → R be a real-valued

function defined on a convex set X. We say that f is quasi-concave (quasi-convex) if for all x′ and

x′′ in X and all λ ∈ [0, 1] we have

f [(1− λ)x′ + λx′′] ≥ min{f(x′), f(x′′)}
(f [(1− λ)x′ + λx′′] ≤ max{f(x′), f(x′′)}).

We say that f is strictly quasi-concave (quasi-convex) if for all x′ and x′′ in X and all λ ∈ (0, 1)
we have

f [(1− λ)x′ + λx′′] > min{f(x′), f(x′′)}
(f [(1− λ)x′ + λx′′] < max{f(x′), f(x′′)}).

Theorem 4.4.1. Let f be a real-valued function defined on a convex set X ⊆ Rn. Then f is quasi-

concave (quasi-convex) if and only if the upper contour sets (lower contour sets) of f are all convex,

that is, if for any a ∈ R the set

Ua = {x ∈ X : f(x) ≥ a}
(La = {x ∈ X : f(x) ≤ a})

is convex.

Proof. Assume f is quasi-concave. Fix a and let x′,x′′ ∈ Ua. Then for all λ ∈ [0, 1],

f(λx′ + (1− λ)x′′) ≥ min{f(x′), f(x′′)}

Since x′,x′′ ∈ Ua, f(x′) ≥ a and f(x′′) ≥ a, which implies the min{f(x′), f(x′′)} ≥ a. There-

fore, f(λx′ + (1 − λ)x′′) ≥ a and thus λx′ + (1 − λ)x′′ ∈ Ua. Hence, the upper contour set is

convex. Now assume the upper contour set is convex. Then for all λ ∈ [0, 1] and for x′,x′′ ∈ Ua,

we have λx′ + (1 − λ)x′′ ∈ Ua. This implies that f(λx′ + (1 − λ)x′′) ≥ a. Since this result

must hold for any a, it must hold for a = min{f(x′), f(x′′)}. Thus, f is quasi-concave. A similar

argument holds for quasi-convexity.
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Figure 4.3: Quasi-concave but not concave

Theorem 4.4.2. All concave (convex) functions are quasi-concave (quasi-convex) and all strictly

concave (strictly convex) functions are strictly quasi-concave (strictly quasi-convex).

Proof. Without loss of generality assume f(x′) ≥ f(x′′). Since f is concave, for 0 ≤ λ ≤ 1

f(λx′ + (1− λ)x′′) ≥ λf(x′) + (1− λ)f(x′′)

≥ λf(x′′) + (1− λ)f(x′′)

= min{f(x′), f(x′′)}.

Thus, f is also quasi-concave. If f is strictly concave then the inequalities become strict and hence

f is strictly quasi-concave. The convex case can be proved in a similar fashion.

It is important to note that the converse of the above theorem is not valid in general (see

figure 4.3). The function f defined on X = {x : x ≥ 0} by f(x) = x2 is quasi-concave (UCS is

convex) but not concave on X, actually it is strictly convex on X.

Theorem 4.4.3. Suppose f : Rn ⊇ X → R is quasi-concave (quasi-convex) and φ : f(X) → R
is increasing. Then φ ◦ f : X → R is quasi-concave (quasi-convex). If f is strictly quasi-concave

(quasi-convex) and φ is strictly increasing, then φ ◦ f is strictly quasi-concave (quasi-convex).

Proof. Consider any x′,x′′ ∈ X. If f is quasi-concave, then

f(λx′ + (1− λ)x′′) ≥ min{f(x′), f(x′′)}.

Therefore, φ increasing implies

φ[f(λx′ + (1− λ)x′′)] ≥ φ[min{f(x′), f(x′′)}] = min{φ[f(x′)], φ[f(x′′)]}.

Thus, φ ◦ f = φ[f(x)] is quasi-concave. If f is strictly quasi-concave and φ is strictly increasing,

the inequalities are strict and thus φ ◦ f is strictly quasi-concave. A similar argument holds for

quasi-convexity.
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Corollary 4.4.1. Suppose f : Rn ⊇ X → R is quasi-concave and φ : f(X) → R is decreasing.

Then φ ◦ f : X → R is quasi-convex. Suppose f : X → R is quasi-convex and φ : f(X) → R is

decreasing. Then φ ◦ f : X → R is quasi-concave.

Proof. Consider any x′,x′′ ∈ X. If f is quasi-concave, then

f(λx′ + (1− λ)x′′) ≥ min{f(x′), f(x′′)}.

Therefore, φ decreasing implies

φ[f(λx′ + (1− λ)x′′)] ≤ φ[min{f(x′), f(x′′)}] = max{φ[f(x′)], φ[f(x′′)]}.

Thus, φ ◦ f = φ[f(x)] is quasi-convex. Similarly if f is quasi-convex.

Remark 4.4.1. The sum of quasi-concave functions need not be quasi-concave unlike the sum of

concave functions which is concave. For instance f1(x) = x3 and f2(x) = −x are both quasi-

concave, but the sum f3(x) = f1(x) + f2(x) = x3 − x is neither quasi-concave nor convex.

Example 4.4.1. Show that the Cobb-Douglas function

f(x) =

n
∏

i=1

xαi

i ,

where αi > 0 for i = 1, . . . , n is quasi-concave for x ≫ 0.

Solution: Consider the natural log of Cobb-Douglas function,

ln f(x) =

n
∑

i=1

αi lnxi,

which is concave since for all i, lnxi is concave and the sum of concave functions is concave

(Theorem 4.2.3). Thus, since concavity implies quasi-concavity, ln f(x) is also quasi-concave. The

exponent et is strictly increasing function: R → R, hence f(x) = exp(ln f(x)) is quasi-concave

by Theorem 4.4.3.

4.5 Quasi-concavity, Quasi-convexity, and Definiteness

Theorem 4.5.1. Let f : Rn ⊇ X → R be a C2 function defined on an open and convex set X ⊆ Rn,

and let ∆k be the leading principle minor of the bordered Hessian of f .

(a) A necessary condition for f to be quasi-concave (quasi-convex) is that

(−1)k+1∆k ≥ 0 ∀k = 2, . . . , n+ 1 ∀x ∈ X

(∆k ≤ 0 ∀k = 2, . . . , n+ 1 ∀x ∈ X)

(b) A sufficient condition for f to be quasi-concave (quasi-convex) is that

(−1)k+1∆k > 0 ∀k = 2, . . . , n+ 1 ∀x ∈ Rn
+

(∆k < 0 ∀k = 2, . . . , n+ 1 ∀x ∈ Rn
+)
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Figure 4.4: Not Quasi-concave

(c) If X ⊆ Rn
++, f is monotonically increasing (decreasing), and

(−1)k+1∆k > 0 ∀k = 2, . . . , n+ 1 ∀x ∈ Rn
+

(∆k < 0 ∀k = 2, . . . , n+ 1 ∀x ∈ Rn
+),

then f is strictly quasi-concave (strictly quasi-convex).

Remark 4.5.1. Be very careful with the direction of the above definitions. In figure 4.4, the function

f(x) = x2 is not quasi-concave since the upper contour set: {x ∈ R|f(x) ≥ 3} = (−∞,−3] ∪
[3,∞) is not a convex set. However,

H(f) =

[

0 2x
2x 2

]

so (−1)2+1∆2 = 4x2 ≥ 0 for all x with strict inequality everywhere except at x = 0. Although

this function fulfills the necessary condition for quasi-concavity, the function is not quasi-concave.

Example 4.5.1. Prove or give a counterexample: If f is a strictly convex function, then f cannot be

quasi-concave.

Solution: False. For f(x) = 1/x defined on R++, the upper contour set {x : f(x) ≥ c} is

convex for all c; For example, for c = 1, the upper contour set is the interval (0,1], which is clearly

convex. Thus, this function is quasiconcave. However, the function is also strictly convex since

(f ′′(x) = 2/x3 > 0 for all x > 0).

Example 4.5.2. Consider f(x) = x3 + x. For x ∈ R, the second order condition, fxx = 6x, is not

always nonpositive. Thus, this function is not concave. The bordered Hessian is given by

H(f) =

[

0 3x2 + 1
3x2 + 1 6x

]

so (−1)2+1∆2 = (3x2 + 1)2 > 0. Therefore, this function is quasi-concave.
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Example 4.5.3.

For the region with x > 0 and −x < y < x, define f(x, y) = x2− y2. Is f concave where defined?

Is f quasiconcave where defined?

Solution: Given f(x, y) = x2 − y2,

(a) fx = 2x, fxx = 2, fy = −2y, fxy = 0, fyy = −2. The Hessian is

H =

[

2 0
0 −2

]

.

Since

∆1 = 2 > 0 and ∆2 =

∣

∣

∣

∣

2 0
0 −2

∣

∣

∣

∣

= −4 < 0,

H is not negative semidefinite so f is not concave.

(b) Bordering the Hessian with first partials, we obtain

H(x, y) =





0 2x −2y
2x 2 0
−2y 0 −2



 ,

(−1)2+1∆2 = (−1)3(−4x2) > 0 ∀x 6= 0,

(−1)2+2∆3 = (−1)48(x2 − y2) > 0 as |y| < x.

Since (−1)k+1|∆k| > 0, k = 2, 3, f is quasi-concave.

Example 4.5.4. Is the utility function u(x1, x2) =
√
x1 +

√
x2 quasi-concave for x1 > 0, x2 > 0?

Is it concave for x1 > 0, x2 > 0?

Solution: Given U(x1, x2) =
√
x1 +

√
x2, the Hessian is given by

H =

[

U11 U12

U21 U22

]

=

[

−x
−3/2
1 /4 0

0 −x
−3/2
2 /4

]

For all (x1, x2) ∈ R2
++, ∆1 = −x

−3/2
1 /4 < 0 and ∆2 = |H| = x

−3/2
1 x

−3/2
2 /16 > 0. Hence H is

negative definite, which implies that U(x1, x2) is strictly concave on R2
++. Since concavity implies

quasi-concavity, U(x1, x2) is also quasi-concave on R2
++.

Example 4.5.5. Is f(x, y) = x2y2 concave and/or quasi-concave on {(x, y) ∈ R2|x ≥ 0, y ≥ 0}?
Is f concave and/or quasi-concave on R2?

Solution: The Hessian is given by

H =

[

2y2 4xy
4xy 2x2

]

.

For all x, y ≥ 0, ∆1 = 2y2 ≥ 0 for all x, y ≥ 0 and ∆2 = |H| = −12x2y2 ≤ 0. Thus, H is not

negative semi-definite, which implies that f is not concave on R2
+ (and also not concave on R2).

Checking quasi-concavity:

H =





0 2xy2 2x2y
2xy2 2y2 4xy
2x2y 4xy 2x2



 .
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For all x, y > 0, (−1)2+1∆2 = 4x2y4 > 0 and (−1)3+1∆3 = 16x4y4 > 0. Thus, for (x, y) ∈
R2
++, the sufficient conditions for quasi-concavity hold since the inequalities are both strict. It

remains to check whether the function f is quasiconcave on R2
+. Since {(x, y) ∈ R2

+|f(x, y) ≥
0} = R2

+, all upper contour sets are convex, and f is quasi-concave on R2
+. Note f is not quasi-

concave on R2 since

f((1/2)(1, 1) + (1/2)(−1,−1)) = f(0, 0) = 0 � min{f(1, 1), f(−1,−1)} = 1.

Example 4.5.6. Is f(x, y) = ln(x+ y) quasi-concave on the set of strictly positive x and y values?

Solution: The Hessian is given by

H =

[

− 1
(x+y)2

− 1
(x+y)2

− 1
(x+y)2 − 1

(x+y)2

]

.

For all x, y > 0, B
(1)
1 = B

(2)
1 = − 1

(x+y)2
< 0 and ∆2 = |H| = 0. Thus, H is negative semidefinite

on R2
++, implying that f is concave, and hence quasi-concave.

Example 4.5.7. Is f(x, y, z) =
√
x+

√
y + z2 concave and/or quasi-concave on R3

++?

Solution: The Hessian is given by





−1
4x

−3/2 0 0

0 −1
4y

−3/2 0
0 0 2



 ,

which is not negative semi-definite (∆1 < 0, ∆2 > 0, and ∆3 > 0), so the function is not concave.

The bordered Hessian








0 1
2x

−1/2 1
2y

−1/2 2z
1
2x

−1/2 −1
4x

−3/2 0 0
1
2y

−1/2 0 −1
4y

−3/2 0
2z 0 0 2









has determinant (2z2x3−x5/2−x3/2y)/8, which is positive for some (x, y, z) ∈ R3
++ and negative

for others. Thus the function is not quasi-concave on R3
++.

Example 4.5.8. Is f(x, y) = x2y concave and/or quasi-concave on R2
++? Explain.

Solution: The gradient and Hessian are respectively given by

∇f =

(

2xy
x2

)

H =

[

2y 2x
2x 0

]

.

Thus, f is not negative semidefinite since ∆2 = −4x2 < 0. Hence f is not concave. The bordered

Hessian is given by

H





0 2xy x2

2xy 2y 2x
x2 2x 0





Thus, (−1)3∆2 = 4x2y2 > 0 for all (x, y) ∈ R2
++ and (−1)4∆3 = 6x4y > 0 for all (x, y) ∈ R2

++.

Thus f is quasi-concave.
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Chapter 5

Optimization

5.1 Unconstrained Optimization

Theorem 5.1.1. If f : Rn → R and all its first partial derivatives are continuously differentiable

on a set which contains input vector x∗ in its interior, then

(a) (Necessary Condition) f has a local maximum (minimum) at x∗ only if ∇f(x∗) = 0 and

H(f(x∗)) is negative (positive) semi-definite.

(b) (Sufficient Condition) f has a strict local maximum (minimum) at x∗ if ∇f(x∗) = 0 and

H(f(x∗)) is negative (positive) definite.

(c) If H(f(x∗)) is indefinite, then x∗ is neither a local maximum nor a local minimum.

Remark 5.1.1. Note that in the univariate case ∇f = 0 is replaced by f ′ = 0 and H(f) NSD

(PSD, ND, and PD, respectively) is replaced by f ′′ ≤ (≥, <,>) 0.

Example 5.1.1. Let f(x, y) = −3x2 + xy − 2x+ y − y2 + 1. Then

∇f =

(

−6x+ y − 2
x+ 1− 2y

)

, H(f) =

[

−6 1
1 −2

]

,

∆1 = −6 < 0, and ∆2 =

∣

∣

∣

∣

−6 1
1 −2

∣

∣

∣

∣

= 11 > 0,

so H(f) is negative definite.

∇f =

[

−6 1
1 −2

] [

x
y

]

+

[

−2
1

]

so ∇f(x, y) = 0 if
[

−6 1
1 −2

] [

x
y

]

+

[

−2
1

]

= 0

or
[

x
y

]

=

[

−6 1
1 −2

]−1 [
2
−1

]

=
1

11

[

−2 −1
−1 −6

] [

2
−1

]

=

[

−3/11
4/11

]

.

Thus, f has a strict local maximum at (x, y) = (−3/11, 4/11).

Definition 5.1.1 (Saddle Point). A critical point x∗ of f for which H(f(x∗)) is indefinite is called

a saddle point of f . A saddle point is a minimum of f in some directions and a maximum of f in

other directions.
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Example 5.1.2. Let f(x, y) = x3 + x2y + 2y2. Then

∇f =

(

3x2 + 2xy
x2 + 4y

)

; H(f) =

[

6x+ 2y 2x
2x 4

]

.

Here H(f) depends on the (x, y) at which it is evaluated. ∇f(x, y) = 0 if 3x2 + 2xy = 0 and

x2+4y = 0. From the last equation y = −x2/4. Substituting this value into the previous equation,

(x2/2)(6 − x) = 0. Thus, (x, y) = (0, 0) or (x, y) = (6,−9).

H[f(0, 0)] =

[

0 0
0 4

]

,

which is PSD (B
(1)
1 = 0 = 0, B

(2)
1 = 4, and B2 = 0).

H[f(6,−9)] =

[

18 12
12 4

]

and its leading principle minors are

∆1 = 18 > 0 and ∆2 =

∣

∣

∣

∣

18 12
12 4

∣

∣

∣

∣

= −72 < 0.

Thus, since the Hessian is indefinite at (6,−9), this point is a saddle point for the function. The

point (0, 0) satisfies the necessary conditions for a local minimum, but not the sufficient conditions.

However, f(x, 0) = x3 so f cannot attain either a local maximum or a local minimum at (0, 0).
This function has no local maxima or local minima.

Theorem 5.1.2 (Global Maxima/Minima). Let f : X → R be a C2 function whose domain is a

convex open subset X of Rn. If f is a concave (convex) function on X and ∇f(x∗) = 0 for some

x∗ ∈ U , then x∗ is a global maximum (minimum) of f on X.

Remark 5.1.2. It is interesting to compare Theorems 5.1.1 and 5.1.2. In order to guarantee that a

critical point x∗ of a C2 function f is a strict local maximum (minimum), we need to show that

H(f(x∗)) is negative (positive) definite; showing that H(f(x∗)) is negative (positive) semi-definite

is not strong enough. However, if we can show that H(f(y)) is negative (positive) semi-definite not

just at x∗ but for all y in a neighborhood about x∗, then by Theorem 5.1.2, we can conclude that x∗

is a maximum (minimum) of f .

Remark 5.1.3. A global maximum (or minimum) does not necessarily have to be a strict maximum

(or minimum). Moreover a strict maximum (or minimum) does not necessarily have to be a global

maximum (or minimum). To see this consider figure 5.1.

Example 5.1.3. Find all local maxima and minima of f(x, y, z) = x2 + x(z− 2) + 3(y− 1)2 + z2

Solution: The associated first order conditions are

∂f

∂x
= 2x+ z − 2

set
= 0

∂f

∂y
= 6(y − 1)

set
= 0

∂f

∂z
= x+ 2z

set
= 0
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Figure 5.1: Strict and/or Global Extrema

(a) Global not Strict (b) Global and Strict (c) Strict not Global

solve the above equations to get (x, y, z) = (43 , 1,−2
3 ). The Hessian matrix is

H =





2 0 1
0 6 0
1 0 2





and the corresponding leading principle minors are

∆1 = 2 > 0

∆2 =

∣

∣

∣

∣

2 0
0 6

∣

∣

∣

∣

= 12 > 0

∆3 = |H| = 18 > 0

Thus, H is PD, and therefore f is strictly convex. From the previous theorem, we can conclude that

the point (x, y, z) = (43 , 1,−2
3 ) is the unique global minimizer (and a strict local minimizer).

5.2 Constrained Optimization I: Equality Constraints

Consider the problem of maximizing a function f(x) = f(x1, x2, . . . , xn) of n variables con-

strained by m < n equality constraints. Let the functions g1(x), g2(x), . . . , gm(x) define the con-

straint set. Thus, our problem is to

maximize or minimize f(x1, x2, . . . , xn)

subject to g1(x1, x2, . . . , xn) = 0

g2(x1, x2, . . . , xn) = 0

...

gm(x1, x2, . . . , xn) = 0

or, equivalently, in a more compact form

maximize or minimize f(x)

subject to g(x) = 0,
(5.1)

where g(x) = 0 denotes an m × 1 vector of constraints, m < n. The condition m < n is needed

to ensure a proper degree of freedom. Without this condition, there would not be a way for the

variables to adjust toward the optimum.
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The most intuitive solution method for problem (5.1) involves the elimination of m variables

from the problem by use of the constraint equations, thereby converting the problem into an equiv-

alent unconstrained optimization problem. The actual solution of the constraint equations for m
variables in terms of the remaining n−m can often prove a difficult, if not impossible, task. More-

over, the elimination of variables is seldom applicable to economic problems, as economic theory

rarely allows for the specification of particular functional forms. Nevertheless, the theory underly-

ing the method of elimination of variables can be used to obtain analytically useful characterizations

of solutions to equality constrained problems.

Alternatively, the solution can be obtained using the Lagrangian function defined as

L(x;λ) = f(x)− λ1g1(x)− λ2g2(x)− · · · − λmgm(x)

= f(x)−
m
∑

i=1

λigi(x),
(5.2)

where λ1, λ2 . . . , λm multiply the constraints and are known as Lagrange multipliers. In order to

solve the problem, we find the critical points of the Lagrangian by solving the equations

∂L
∂x1

= 0;
∂L
∂x2

= 0; · · · ; ∂L
∂xn

= 0;

∂L
∂λ1

= 0;
∂L
∂λ2

= 0; · · · ; ∂L
∂λm

= 0,

(5.3)

which represent n+m equations for the n+m variables x1, x2, . . . , xn, λ1, λ2 . . . , λm. Thus, we

have transformed what was a constrained problem of n variables into an unconstrained problem

of n + m variables. Note that since λ1, λ2 . . . , λm simply multiply the constraints, ∂L
∂λi

, for i =
1, 2, . . . ,m, is equivalent to each multipliers’ respective constraint. Thus, the system of equations,

(5.3), can be written more compactly as

∇f(x) = λ∇g(x), (5.4)

g(x) = 0

where λ is a 1 ×m vector of Lagrange multipliers and ∇g(x) is an m × n Jacobian matrix of the

constraint set.

To understand this more clearly, consider the problem of maximizing f(x1, x2) subject to

g(x1, x2) = 0. Geometrically, our goal is to find the highest valued level-curve of f , which meets

the constraint set C (see figure 5.2). The highest level-curve of f cannot cross the constraint curve

C (see point x′); if it did, nearby higher level sets would also cross (see point x′′). Thus, the highest

level set of f must be tangent to C at the constrained max, x∗.

The gradient vector of the objective function and constraint set is given by

∇f(x) =

[

∂f
∂x1

∂f
∂x2

]

and ∇g(x) =

[

∂g
∂x1

∂g
∂x2

]

,

which are perpendicular to the level sets of f and g. Since the level sets of f and g have the same

slope at x∗, the gradient vectors ∇f(x) and ∇g(x) must line up at x∗. Thus they point in the same

direction or opposite directions (see figure 5.2). In either case, the gradients are scalar multiples

of each other. If the corresponding Lagrange multiplier is λ∗, then ∇f(x∗) = λ∗∇g(x∗) as the

Lagrange formulation, given in (5.4), suggests.

75



A. W. Richter 5.2. CONSTRAINED OPTIMIZATION I: EQUALITY CONSTRAINTS

Figure 5.2: Constrained Optimization and the Lagrange Principle

C

x∗

x′′

x′

C

x∗

∇g(x∗)

∇f(x∗)

C

x∗

∇g(x∗)

∇f(x∗)

Remark 5.2.1. In order for this transformation to remain valid, we must place a restriction on the

constraint set known as constraint qualification, which requires:

(a) ∇g(x∗) 6= 0 if the problem defined in (5.1) has only one constraint; and

(b) the rank of the Jacobian matrix

J(x∗) =











∇g1(x
∗)

∇g2(x
∗)

...

∇gm(x∗)











=













∂g1(x∗)
∂x1

· · · ∂g1(x∗)
∂xn

∂g2(x∗)
∂x1

· · · ∂g2(x∗)
∂xn

...
. . .

...
∂gm(x∗)

∂x1
· · · ∂gm(x∗)

∂xn













equals m (full rank) if the problem defined in (5.1) has m constraints, m > 1.

Example 5.2.1. This example illustrates why the rank m condition is required for the transformation

given in (5.2). Suppose our problem is to

maximize f(x1, x2, x3) = x1

subject to g1(x1, x2, x3) = (x1 − 1)2 − x3 = −1

g2(x1, x2, x3) = (x1 − 1)2 + x3 = 1.

Then the gradient vectors are

∇f =





1
0
0



 , ∇g1 =





2(x1 − 1)
0
−1



 , and ∇g2 =





2(x1 − 1)
0
1



 .

The set of points satisfying both constraints is {(1, y, 1)|y ∈ R}. If the transformation in (5.2) is

valid, (5.4) implies

(1, 0, 0) = λ1(0, 0,−1) + λ2(0, 0, 1),

which is not possible since the gradient vectors are linearly dependent. The problem here is that the

transformation is not valid, since constraint qualification is not satisfied (rank J(x∗) = 1 < m).
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Remark 5.2.2. Constraint qualification says that for transformation (5.2) to be valid, no point satis-

fying the constraint set can be a critical point of the constraint set. This means that if the constraint

set is linear, constraint qualification will automatically be satisfied.

Theorem 5.2.1 (Necessary and Sufficient Conditions for an Extremum). Let f, g1, g2, . . . , gk be C2

real-valued functions on Rn. Consider the problem of maximizing (minimizing) f on the constraint

set g(x) = 0, where g(x) = 0 denotes an m× 1 vector of constraints, m < n. Then

(a) (necessary condition)

∇L(x∗, λ∗) = 0

(b) (Sufficient Condition) If there exist vectors x∗ ∈ Rn, λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
m) ∈ Rm such that

∇L(x∗, λ∗) = 0

and for every non-zero vector z ∈ Rn satisfying

∇gi(x
∗) · z = 0, i = 1, 2, . . . ,m

it follows that

zT∇2
xL(x∗, λ∗)z < (>)0, (Hessian is negative (positive) definite)

then f has a strict local maximum (minimum) at x∗

Conveniently, these conditions for a maximum or minimum can be stated in terms of the Hessian

of the Lagrangian function, which turns out to be a bordered Hessian. The following rules work with

the bordered Hessian of a constrained optimization problem of the form:

H =









0
... BT

. . . . . . . . . .

B
... A









=































Lλ1λ1
· · · Lλ1λm

... Lλ1x1
· · · Lλ1xn

...
. . .

...
...

...
. . .

...

Lλmλ1
· · · Lλmλm

... Lλmx1
· · · Lλmxn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lx1λ1
· · · Lx1λm

... Lx1x1
· · · Lx1xn

...
. . .

...
...

...
. . .

...

Lxnλ1
· · · Lxnλm

... Lxnx1
· · · Lxnxn































=































0 · · · 0
... ∂g1/∂x1 · · · ∂g1/∂xn

...
. . .

...
...

...
. . .

...

0 · · · 0
... ∂gm/∂x1 · · · ∂gm/∂xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂g1/∂x1 · · · ∂gm/∂x1
... Lx1x1

· · · Lx1xn

...
. . .

...
...

...
. . .

...

∂g1/∂xn · · · ∂gm/∂xn
... Lxnx1

· · · Lxnxn































.
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Criterion 5.2.1 (Sufficient Conditions for strict local Maximum with constraints). Let f and con-

straints g1, g2, . . . , gm be twice continuously differentiable real-valued functions. If there exist vec-

tors x∗ ∈ Rn, λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
m) ∈ Rm such that

∇L(x∗, λ∗) = 0

and if H is negative definite on the constraint set, which is the case if (−1)k∆m+k > 0 for k =
m + 1, ..., n, where m is the number of constraints that hold with equality, n is the number of

endogenous variables, and ∆k is the leading principle minor of order k (Note: Lagrange multipliers

do not count as endogenous variables), then f has a strict local maximum at x∗.

Criterion 5.2.2 (Sufficient Conditions for strict local Minimum with constraints). Let f and con-

straints g1, g2, . . . , gm be twice continuously differentiable real-valued functions. If there exist vec-

tors x∗ ∈ Rn, λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
m) ∈ Rm such that

∇L(x∗, λ∗) = 0

and if H is positive definite on the constraint set, which is the case if (−1)m∆m+k > 0 for k =
m+ 1, ..., n, then f has a strict local minimum at x∗.

Remark 5.2.3. In short, we must check n−m leading principle minors starting with the principle

minor of highest order and working backwards. For example, if a problem contains 5 variables and

3 constraints, it will be necessary to check the signs of two principle minors: ∆7 and ∆8.

Example 5.2.2 (Minimizing Cost subject to an Output Constraint). Consider a production function

given by

y = 20x1 − x21 + 15x2 − x22.

Let the prices of x1 and x2 be 10 and 5 respectively with an output constraint of 55. Then to mini-

mize the cost of producing 55 units of output given these prices, we set up the following Lagrangian

L(x1, x2, λ) = (10x1 + 5x2)− λ(20x1 − x21 + 15x2 − x22 − 55),

which has first order conditions

∂L
∂x1

= 10− λ(20− 2x1)
set
= 0

∂L
∂x2

= 5− λ(15 − 2x2)
set
= 0

∂L
∂λ

= 20x1 − x21 + 15x2 − x22 − 55
set
= 0.

If we take the ratio of the first two first order conditions, we obtain

2 =
20− 2x1
15− 2x2

→ 30− 4x2 = 20− 2x1

→ 10− 4x2 = −2x1 → x1 = 2x2 − 5.

Now plug this into the last first order condition to obtain

20(2x2 − 5)− (2x2 − 5)2 + 15x2 − x22 − 55 = 0.
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Multiplying out and solving for x2 will give

40x2 − 100− 4x22 + 20x2 − 25 + 15x2 − x22 − 55 = 0

→ x22 − 15x2 + 36 = 0

→ (x2 − 12)(x2 − 3) = 0.

Therefore, we have two potential solutions (x1, x2) = (19, 12) and (x1, x2) = (1, 3). The Lagrange

multiplier λ is obtained by plugging the solutions into the above first order conditions to obtain

10 − λ(20 − 2(19)) = 0 → λ = −5

9

10− λ(20− 2(1)) = 0 → λ =
5

9
.

Given that ∇y(19, 12) = (−18,−9) 6= 0 and ∇y(1, 3) = (18, 9) 6= 0, constraint qualification

holds. To check for a maximum or minimum, we set up the bordered Hessian. Consider first the

point (19, 12,−5/9). The bordered Hessian in this case is

H =









∂2L(x∗,λ∗)
∂x2

1

∂2L(x∗,λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗,λ∗)
∂x2∂x1

∂2L(x∗,λ∗)
∂x2

2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0









=





2λ 0 20− 2x1
0 2λ 15− 2x2

20− 2x1 15− 2x2 0





=





−10
9 0 −18
0 −10

9 −9
−18 −9 0



 .

Since we have only two endogenous variables (n = 2) and one constraint (m = 1), it is sufficient

to check only the principle minor of highest magnitude (∆3 or, more precisely, the determinant of

the bordered Hessian) in order to determine definiteness.

|H| = (−1)2
(

−10

9

) ∣

∣

∣

∣

−10
9 −9

−9 0

∣

∣

∣

∣

+ (−1)4(−18)

∣

∣

∣

∣

0 −10
9

−18 −9

∣

∣

∣

∣

= −10

9
(−81) + (−18)(−20)

= 450.

Since k = 2, (−1)2∆3 = (−1)2(450) > 0. Therefore, H is negative definite on the constraint set,

and thus this point is a strict local maximum.

Now consider the other point, (1, 3, 5/9). The bordered Hessian is given by





2λ 0 20− 2x1
0 2λ 15− 2x2

20− 2x1 15− 2x2 0



 =





10
9 0 18
0 10

9 9
18 9 0



 .

Again, it is sufficient to check only the determinant of the bordered Hessian in order to determine

definiteness. In this case, detH = −450 and (−1)∆3 = (−1)(−450) > 0. Therefore, H is

positive definite on the constraint set, and thus this point is a strict local minimum. The minimum

cost is obtained by substituting this point into the cost expression (objective function) to obtain

C = 10(1) + 5(3) = 25.
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Example 5.2.3. Consider the problem of maximizing x2y2z2 subject to the constraint g(x, y, z) =
x2 + y2 + z2 = 3. The Lagrangian function is given by

L = x2y2z2 + λ(3− x2 − y2 − z2)

and the corresponding first order conditions are

∂L
∂x

= 2xy2z2 − 2λx
set
= 0

∂L
∂y

= 2x2yz2 − 2λy
set
= 0

∂L
∂z

= 2x2y2z − 2λz
set
= 0

∂L
∂λ

= x2 + y2 + z2 − 3
set
= 0,

with solution x2 = y2 = z2 = λ = 1. Since ∇g(±1,±1,±1) = (±2,±2,±2) 6= (0, 0, 0),
constraint qualification holds. At x = y = z = λ = 1, the bordered Hessian for this problem is

H =









0 2x 2y 2z
2x 2y2z2 − 2λ 4xyz2 4xy2z
2y 4xyz2 2x2z2 − 2λ 4x2yz
2z 4xy2z 4x2yz 2x2y2 − 2λ









=









0 2 2 2
2 0 4 4
2 4 0 4
2 4 4 0









.

Since n = 3 and m = 1, we have to check the signs of the two leading principle minors of

highest order, ∆3 and ∆4. After computation, we find ∆3 = 32 and ∆4 = −192. For k = 2,

(−1)2∆3 = (−1)2(32) > 0 and for k = 3, (−1)3∆4 = (−1)3(−192) > 0. Therefore, H
is negative definite on the constraint set, and thus this point is a strict local maximum. By the

properties of determinant, the remaining seven critical points also satisfy the sufficiency condition

conditions and are classified as local maxima. This is an example of a situation where the solution

is globally optimal, but not unique.

5.3 Constrained Optimization II: Non-negative Variables

To map our problem in section 5.2 into one that makes greater economic sense, consider the follow-

ing problem, which postulates that the variables x1, x2, . . . , xj are subject to inequality constraints.

maximize or minimize f(x1, x2, . . . , xn)

subject to g1(x1, x2, . . . , xn) = 0

g2(x1, x2, . . . , xn) = 0

...

gm(x1, x2, . . . , xn) = 0

x1, x2, . . . , xj ≥ 0 xj+1, . . . , xn > 0.

If the optimum, x∗, happens to be that these requirements are not binding, that is, x1, x2, . . . , xj
are in fact strictly positive, then the procedure outlined in the preceding section for determining

optimal points remains unaltered. That is, assigning a Lagrange multiplier λi, i = 1, 2, . . . ,m to

each constraint, the Lagrangian function can once again be written as

L(x1, . . . , xn, λ1, . . . , λm) = f(x1, x2, . . . , xn)− λ1g1(x1, . . . , xn)− · · · − λmgm(x1, . . . , xn)

= f(x1, x2, . . . , xn)−
m
∑

k=1

λkgk(x1, . . . , xn),
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and the first order necessary conditions satisfied at the optimum x∗ are

∂L
∂xj

= 0, j = 1, 2, . . . , n (5.5)

∂L
∂λk

= 0, k = 1, 2, . . . ,m, (5.6)

so long as constraint qualification is satisfied. However, it is often the case that some components

are positive while others are zero. Thus, an equation like (5.5) should hold for the partial derivative

of the Lagrangian with respect to every component that is strictly positive and an inequality with

respect to every component that is zero. In other words for x1, x2, . . . , xn, we should have

∂L
∂xj

≤ 0, xj ≥ 0, (5.7)

with at least one of these holding with equality. The requirement that at least one inequality in (5.7)

should hold as an equality is sometimes stated more compactly as

xj
∂L
∂xj

= 0.

The point is that the product is zero only if at least one of the factors is zero. A pair of inequalities

like (5.7), not both of which can be strict, is said to show Complementary Slackness, which we will

denote “CS”. A single inequality, say xj ≥ 0, is binding if it holds as an equality, that is, if xj is at

the extreme limit of its permitted range; the inequality is said to be slack if xj is positive, meaning it

has some room to maneuver before hitting its extreme. Each one of the pair of inequalities in (5.7)

therefore complements the slackness of the other; if one is slack the other is binding.

The intuition is as follows: if x∗j > 0, the constraint is not binding and it is possible to adjust xj
until the marginal benefit of further adjustments is zero (∂L/∂xj = 0), given the other constraints.

If, on the other hand, x∗j = 0, then the constraint is binding and the marginal benefit of increasing

xj is negative (∂L/∂xj ≤ 0). In this case, it is possible that the objective value could be improved

if negative xj values were permitted.

Example 5.3.1. Consider the following problem:

Maximize f(x, y) = 1− 8x+ 10y − 2x2 − 3y2 + 4xy

subject to x ≥ 0 and y ≥ 0.

Begin by calculating the gradient and Hessian:

∇f(x, y) =

[

−8− 4x+ 4y
10− 6y + 4x

]

, H(f) =

[

−4 4
4 −6

]

.

For all (x, y), the Hessian matrix is negative definite, since ∆1 = −4 < 0 and ∆2 = 8 > 0. Hence

f is a concave function, and any (x, y) that satisfies complementary slackness is a constrained global

maximum. It remains to locate such a point.

Our first pass at the problem is to look for a solution with x > 0, y > 0 so that ∇f(x, y) = 0.

Equating the gradient to the zero-vector gives

x− y = −2 and 2x− 3y = −5.
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These equations are satisfied only when x = −1 and y = 1, which obviously violates the fact that

x > 0. Thus our problem is not yet solved. However, the calculation just made was not a wasted

effort, for we have in fact found the unconstrained maximum. And, since this has x < 0, it is likely

that x = 0 at the constrained maximum. We therefore look for a solution with x = 0 and y > 0, so

that ∂f/∂y = 0. Equating x and ∂f/∂y to zero we see that 10 − 6y = 0, so y = 5/3. Thus the

point (0, 5/3) satisfies the conditions

x = 0, y > 0, ∂f/∂y = 0,

and it remains to show that this point satisfies the remaining condition for a constrained maximum,

namely ∂f/∂x < 0. At (0, 5/3),

∂f/∂x = −4(2 + 0− 5/3) = −4/3 < 0,

so the condition is satisfied. Thus the constrained maximum is attained where x = 0 and y = 5/3;

the constrained maximum value of f is therefore 28/3. This is of course less than the value taken

by f at the unconstrained maximum (−1, 1), which is in fact 10.

Example 5.3.2. Define the profit function as

Π(x, y) = (−80 + 24x+ 78y − 3x2 − 3xy − 4y2)/10,

where x and y are the quantities of two different goods. We wish to choose x and y to maximize

Π(x, y) subject to the constraints x ≥ 0 and y ≥ 0.

In this case, ∂Π/∂x = 1
10(24− 6x− 3y) and ∂Π/∂y = 1

10 (78− 3x− 8y). The Hessian Matrix

H =

[

−3
5 − 3

10
− 3

10 −4
5

]

has principle minors ∆1 < 0 and ∆2 > 0. Therefore Π(x, y) is negative definite. Hence the profit

function is concave, and the first order conditions give a global constrained maximum. It is not

hard to see that the only values of x and y for which ∂Π/∂x = ∂Π/∂y = 0 are x = −14/13 and

y = 132/13, which clearly violates the constraints. We therefore look for a solution (x, y) such that

x = 0, y > 0, ∂Π/∂x ≤ 0, and ∂Π/∂y = 0. The first, second, and fourth conditions are satisfied

where x = 0 and y = 9.75. Since 9.75 > 8, the third condition is also satisfied. Hence the solution

is x = 0, y = 9.75 and the maximal profit is 30.025.

5.4 Constrained Optimization III: Inequality Constraints

To find the constrained maximum or minimum of a function, we simply constructed the Lagrangian,

set its (m+n) first order conditions equal to zero, and then solved these (m+n) equations in (m+n)

unknowns. However, the vast majority of constrained optimization problems that arise in economics

have their constraints defined by inequalities:

g1(x1, x2, . . . , xn) ≤ 0, g2(x1, x2, . . . , xn) ≤ 0, . . . , gm(x1, x2, . . . , xn) ≤ 0.

Unfortunately, the method for finding the constrained maxima in problems with inequality con-

straints is a bit more complex than the method we used for equality constraints. The first order

82



A. W. Richter 5.4. CONSTRAINED OPTIMIZATION III: INEQUALITY CONSTRAINTS

conditions involve both equalities and inequalities and their solution eentaiils the investigations of

a number of cases. To see this more clearly, consider the following problem:

maximize f(x1, x2, . . . , xn)

subject to g1(x1, x2, . . . , xn) ≤ 0

g2(x1, x2, . . . , xn) ≤ 0

...

gm(x1, x2, . . . , xn) ≤ 0

x1, x2, . . . , xn ≥ 0.

(5.8)

As an alternative to the procedure outlined in the previous section, we could introduce n new

constraints in addition to the m original ones:

gm+1(x) = −x1 ≤ 0, . . . , gm+n(x) = −xn ≤ 0. (5.9)

Then, if we introduce Lagrange multipliers λ1, . . . , λm that are associated with the constraints and

µ1, . . . , µn to go with the non-negativity constraints, our Lagrangian function is of the form

L(x, λ, µ) = f(x)−
m
∑

j=1

λjgj(x)−
n
∑

i=1

µi(−xi), (5.10)

where λ = {λ1, . . . , λm} and µ = {µ1, . . . , µn}. The necessary conditions for x∗ to solve this

problem are

∂f(x∗)
∂xi

−
m
∑

j=1

λj
∂gj(x

∗)
∂xi

+ µi = 0, i = 1, . . . , n (i)

gj(x
∗) ≤ 0, λj ≥ 0 (λj = 0 if gj(x

∗) < 0), j = 1, . . . ,m (ii)

xi ≥ 0, µi ≥ 0 (µi = 0 if xi > 0), i = 1, . . . , n. (iii)

To reduce this collection of m + n constraints and m + n Lagrange multipliers, the necessary

conditions for problem (5.8) are often formatted slightly differently. In fact, it follows from (i) that
∂f(x∗)
∂xi

−∑m
j=1 λj

∂gj(x∗)
∂xi

= −µi. Since µi ≥ 0 and −µi = 0 if xi > 0, we see that (i) and (iii)

together are equivalent to the condition

∂f(x∗)
∂xi

−
m
∑

j=1

λj
∂gj(x

∗)
∂xi

≤ 0 (= 0 if x∗i > 0), i = 1, . . . , n.

With the possibility of inequality constraints, there are now two kinds of possible solutions: one

where the constrained optimum lies in the region where gj(x) < 0, in which case constraint j
is slack, and one where the constrained optimum lies on the boundary gj(x) = 0, in which case

constraint j is binding. In the former case, the function gj(x) plays no role. x∗ still corresponds to

the optimum of the Lagrangian given in (5.10), but this time with λj = 0. The latter case, where the

optimum lies on the boundary of each constraint, is analogous to the equality constraint discussed

previously and corresponds to the optimum of the Lagrangian with λj 6= 0 for all j. In this case,

however, the sign of the Lagrange multiplier is crucial, because the objective function f(x) will

only be at a maximum if its gradient is oriented away from the region g(x) < 0 (i.e. ∇g(x) and

∇f(x) point in the same direction). We therefore have ∇f(x) = λ∇g(x) for λj ≥ 0 for all j (if

the constraint was written as g(x) ≥ 0, the gradient vectors would point in opposite directions and

∇f(x) = −λ∇g(x) for λj ≥ 0 for all j).
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Remark 5.4.1 (Constraint Qualification). In order for the transformation in (5.10) to be valid, the

gradient vectors ∇gj(x
∗) (j = 1, . . . ,m) corresponding to those constraints that are binding at x∗

must be linearly independent. In other words, the corresponding Jacobian matrix must be full rank.

Remark 5.4.2. When solving optimization problems subject to inequality constraints, it is helpful to

map the problem into the standard form given in (5.8). If the problem is one of minimizing f(x), the

equivalent problem of maximizing −f(x) should be solved. Also, all inequality constraints should

be written as gj(x) ≤ 0 (i.e. if the original constraint was rj(x) ≤ bj , then gj(x) = rj(x) − bj ,
while if the original was rj(x) ≥ bj , then gj(x) = bj − rj(x)).

Theorem 5.4.1 (Kuhn-Tucker Necessary Conditions). Suppose that x∗ = (x∗1, . . . , x
∗
n) solves

(5.8). Suppose further that the constraint qualification is satisfied. The there exist unique num-

bers λ∗
1, . . . , λ

∗
m such that

(a)
∂f(x∗)
∂xi

−
∑m

j=1 λj
∂gj(x

∗)
∂xi

≤ 0 (= 0 if x∗j > 0), i = 1, . . . , n

(b) gj(x
∗) ≤ 0, λj ≥ 0 (= 0 if gj(x

∗) < 0), j = 1, . . . ,m.

Theorem 5.4.2 (Kuhn-Tucker Sufficient Conditions). Consider problem (5.8) and suppose that x∗

and λ∗
1, . . . λ

∗
m satisfy conditions (a) and (b) in theorem (5.4.1). If the Lagrangian L = f(x∗) −

∑m
j=1 λ

∗
jgj(x

∗) is concave, then x∗ is optimal.

Note that in this formulation of the necessary/sufficient conditions we use the ordinary La-

grangian, not the extended Lagrangian used earlier. The exhaustive procedure for finding a solution

using this theorem involves searching among all 2m+n patterns that are possible from the (m+ n)
complementary slackness conditions. Fortunately, short-cuts are usually available.

Theorem 5.4.3 (Conditions for Globality).

(a) If the feasible set is compact and the objective function is continuous, then the best of the

local solutions is the global solution.

(b) If the feasible set is convex and the objective function is concave, then any point satisfying

the first-order conditions is a global maximizer. If the feasible set is convex and the objective

function is strictly concave, then any point satisfying the first-order conditions is the unique

global maximizer. (Similar conclusions hold for convex objective functions and minimizers.)

(c) If the feasible set is convex and the objective function is quasi-concave, then any point satisfy-

ing the first-order conditions [with ∇f 6= 0] is a global maximizer. If, in addition, the feasible

set is strictly convex or the objective function is strictly quasi-concave, then any point satis-

fying the first-order conditions (with ∇f 6= 0) is the unique global maximizer. [To see why

we need ∇f 6= 0, consider the problem of maximizing f(x, y) = xy subject to x ≥ 0, y ≥ 0,

and x + y ≤ 2. The feasible set is convex and f is quasi-concave on R2
+. The first-order

conditions hold at (0,0) with ∇f(0, 0) = 0, but (0,0) is clearly not even a local maximizer.]

Example 5.4.1. Now let us apply the above rules to the following maximization problem

max xy

subject to x+ y ≥ −1

x+ y ≤ 2
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The associated Lagrangian function is

L(x, y, λ, µ) = xy + λ(x+ y + 1) + µ(2− x− y).

and the first order conditions are as follows:

∂L
∂x

= y + λ− µ
set
= 0

∂L
∂y

= x+ λ− µ
set
= 0

∂L
∂λ

= x+ y + 1 ≥ 0 λ ≥ 0 with “CS”

∂L
∂µ

= 2− x− y ≥ 0 µ ≥ 0 with “CS”

The bordered Hessian is

H =









Lλλ Lλµ Lλx Lλy

Lµλ Lµµ Lµx Lµy

Lxλ Lxµ Lxx Lxy

Lyλ Lyµ Lyx Lyy









=









0 0 1 1
0 0 −1 −1
1 −1 0 1
1 −1 1 0









.

Then we have these solutions for the following cases:

Case 1: λ = 0 = µ results in s∗1 = (0, 0, 0, 0). Thus, we no longer have any binding constraints,

that is, they drop out of the Lagrangian. Therefore, m = 0 and n = 2 and we must check

the two leading principle minors of highest magnitude. With the constraint dropping out, the

bordered Hessian becomes

H =

[

0 1
1 0

]

.

We then see that for k = 2, (−1)2∆2 = −1 < 0, which violates the rule for negative

definiteness. Thus, this point is not a local maximum.

Case 2: λ = 0, µ > 0 results in s∗2 = (1, 1, 0, 1). Then we have one binding constraint, so that

m = 1 and n = 2. Thus, we must check only the last leading principle minor. The bordered

Hessian is

H =





0 −1 −1
−1 0 1
−1 1 0



 .

Since (−1)2∆3 = detH = 2 > 0, this point is a local maximum.

Case 3: λ > 0, µ = 0 results in s∗3 = (−1/2,−1/2, 1/2, 0). Again, we have one binding con-

straint, so that m = 1 and n = 2, and we must check only the last leading principle minor.

The bordered Hessian is

H =





0 1 1
1 0 1
1 1 0



 .

Since (−1)2∆3 = detH = 2 > 0, this point is a local maximum.

Case 4: λ > 0, µ > 0 results in no solution.
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For all x, y ∈ R, the feasible set is not compact. However, for x, y > 0 or x, y < 0, it is, which is

the relevant set since xy < 0 when x and y have opposite signs. Comparing the output for f(1, 1)
and f(−1/2,−1/2) and noting that the feasible set is compact when x and y have the same sign

implies that (x∗, y∗) = (1, 1) is the unique global maximum.

Example 5.4.2. Consider the following problem:

min x2 + 2y2 + 3z2,

subject to 3x+ 2y + z ≥ 17.

The Lagrangian function is (note the negative sign, so we in fact minimize once we find the maxi-

mizer of the negative of the objective function):

L = −(x2 + 2y2 + 3z2) + λ(3x+ 2y + z − 17).

The first order conditions are:

∂L
∂x

= −2x+ 3λ
set
= 0, (i)

∂L
∂y

= −4y + 2λ
set
= 0, (ii)

∂L
∂z

= −6z + λ
set
= 0, (iii)

∂L
∂λ

= 3x+ 2y + z − 17 ≥ 0, λ ≥ 0 with “CS”. (iv)

Case 1 (λ = 0): From (i)-(iii) x = 0, y = 0, z = 0, which violates (iv).

Case 2 (λ > 0): From (iv), 3x+2y+ z− 17 = 0. Solving (i)-(iii) along with this equation, results

in (x, y, z, λ) = (9/2, 3/2, 1/2, 3). Now check the second order conditions. The bordered

Hessian of the Lagrangian is

H =









Lλλ Lλx Lλy Lλz

Lxλ Lxx Lxy Lxz

Lyλ Lyx Lyy Lyz

Lzλ Lzx Lzy Lzz









=









0 3 2 1
3 −2 0 0
2 0 −4 0
1 0 0 −6









.

In this case, n = 3 and m = 1, and we must check whether (−1)2∆3 > 0 and (−1)3∆4 > 0.

Since (−1)2∆1+2 = 44 > 0 and (−1)3∆1+3 = 272 > 0, we have found a local maximum.

The original objective function is strictly convex (positive definite), and the feasible set is convex

(linear), so (x∗, y∗) = (9/2, 3/2) is the unique global minimizer.

Example 5.4.3. Find all local maximizers for the function f(x, y) = −√
x+ y subject to x ≥ 0

and x2y ≥ 108. Then find all global maximizers for the problem or show none exist.

Solution: The Lagrangian function is

L = −√
x+ y − λ(108 − x2y)

and the associated first order conditions are as follows

Lx = −1/2(x + y)−1/2 + 2λxy ≤ 0, x ≥ 0 with “CS”
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Ly = −1/2(x + y)−1/2 + λx2 = 0

Lλ = x2y − 108 ≥ 0, λ ≥ 0 with “CS”

Both λ = 0 and x = 0 are inconsistent with Ly = 0. Thus, λ > 0 and x > 0 is the only possible

case, and the unique potential solution is (6, 3, 1/216). The associated bordered Hessian is

H =





2λy + (x+ y)−3/2/4 2λx+ (x+ y)−3/2/4 2xy

2λx+ (x+ y)−3/2/4 (x+ y)−3/2/4 x2

2xy x2 0



 =





1/27 7/108 36
7/108 1/108 36
36 36 0



 .

In this case, n − m = 1, so we only have one condition to check: (−1)2∆3 = 108 > 0. Thus,

(x∗, y∗) = (6, 3) is a strict local maximizer and the only local maximizer. In order to assess

globality, first note that both x and y must be strictly positive to be feasible, so the feasible set

turns out to be the subset of R2
++, where g(x, y) = x2y ≥ 108. Checking the bordered Hessian

for g, we find g is strictly quasi-concave on R2
++. Thus, the feasible set, an upper contour set for

g, is convex. The objective function is quasi-concave: for any c ≤ 0, the set of (x, y) such that

−√
x+ y ≥ c is {(x, y) ∈ R2|0 ≤ x + y ≤ c2}, which is convex (for c > 0 the set is empty).

With a quasi-concave objective function and a convex feasible set, the unique local maximizer is the

unique global maximizer.
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Chapter 6

Comparative Statics

In many economic problems we need to know how an optimal solution or an equilibrium solution

changes when a parameter in the problem changes. For example, how does the utility-maximizing

bundle for a competitive consumer change when a price changes, or how does a market equilibrium

price change when a tax on the good changes? These are examples of comparative statics questions.

In each case we are interested in how changes in exogenous variables (the parameters determined

outside the model) affect the endogenous variables (those determined within the model).

For the consumer choice problem, the endogenous variables are the quantities demanded (cho-

sen by the consumer), while the exogenous variables are prices (outside the control of the compet-

itive consumer). For the market example, the endogenous variable is the market equilibrium price

(determined by supply and demand in the market), while the exogenous variable is the tax rate (de-

termined outside the market in some political process). In this section, you will find two extremely

helpful tools for evaluating comparative statics.

6.1 Cramer’s Rule

Cramer’s Rule provides a recipe for solving linear algebraic equations in terms of determinants.

Denote the simultaneous equations by

Ax = y, (6.1)

where A is a given n× n matrix and y is a given n× 1 vector of unknowns.

The explicit solutions of the components x1, x2, . . . , xn of x in terms of determinants are

x1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 a12 a13 . . . a1n
y2 a22 a23 . . . a2n
...

...
. . .

...
...

yn an2 an3 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

|A| , x2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 y1 a13 . . . a1n
a22 y2 a23 . . . a2n

...
...

. . .
...

...

an2 yn an3 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

|A| , . . . (6.2)

Theorem 6.1.1 (Cramer’s Rule). Let A be a nonsingular matrix. Then the unique solution x =
(x1, . . . , xn) of the n× n system Ax = y is

xi =
detBi

detA
, for i = 1, . . . , n,

where Bi is the matrix A with the right-hand side y replacing the ith column of A.

88



A. W. Richter 6.2. IMPLICIT FUNCTION THEOREM

Example 6.1.1. Solve the following 3× 3 linear system:





5 2 1
3 2 0
1 0 2









x1
x2
x3



 =





8
5
3



 .

Using Cramer’s rule:

x1 =

∣

∣

∣

∣

∣

∣

8 2 1
5 2 0
3 0 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5 2 1
3 2 0
1 0 2

∣

∣

∣

∣

∣

∣

=
6

6
= 1, x2 =

∣

∣

∣

∣

∣

∣

5 8 1
3 5 0
1 3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5 2 1
3 2 0
1 0 2

∣

∣

∣

∣

∣

∣

=
6

6
= 1, x3 =

∣

∣

∣

∣

∣

∣

5 2 8
3 2 5
1 0 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5 2 1
3 2 0
1 0 2

∣

∣

∣

∣

∣

∣

=
6

6
= 1.

Example 6.1.2. Solve the following 2× 2 linear algebraic system:

[

2 + β −β
−β 1 + β

] [

x1
x2

]

=

[

5
0

]

.

Using Cramer’s rule:

x1 =

∣

∣

∣

∣

5 −β
0 1 + β

∣

∣

∣

∣

∣

∣

∣

∣

2 + β −β
−β 1 + β

∣

∣

∣

∣

=
5 + 5β

2 + 3β
, x2 =

∣

∣

∣

∣

2 + β 5
−β 0

∣

∣

∣

∣

∣

∣

∣

∣

2 + β −β
−β 1 + β

∣

∣

∣

∣

=
5β

2 + 3β
.

6.2 Implicit Function Theorem

To understand the Implicit Function Theorem (IFT), first consider the simplest case: one equation

with one endogenous and one exogenous variable of the form

f(x, y) = 0. (6.3)

Assuming that f is C1 and (6.3) defines y as a differentiable function of x, implicit differentiation

yields
∂f

∂x
dx+

∂f

∂y
dy = 0.

If ∂f/∂y 6= 0, then
dy

dx
= −

(

∂f

∂x

)/(

∂f

∂y

)

.

Now, carry out this computation more generally for the implicit function G(x, y) = c around the

specific point x = x0, y = y0. We suppose that there is a C1 solution y = y(x) to the equation

G(x, y) = c, that is,

G(x, y(x)) = c. (6.4)

We will use the Chain Rule (section 1.2.5) to differentiate (6.4) with respect to x at x0:

∂G

∂x
(x0, y(x0)) ·

dx

dx
+

∂G

∂y
(x0, y(x0)) ·

dy

dx
(x0) = 0,
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∂G

∂x
(x0, y0) +

∂G

∂y
(x0, y0) · y′(x0) = 0.

Solving for y′(x0) yields

y′(x0) =
dy(x0)

dx
= −

∂G
∂x (x0, y0)
∂G
∂y (x0, y0)

.

Theorem 6.2.1 (Implicit Function Theorem-One Exogenous Variable). Let G(x, y) be a C1 func-

tion on an ε-neighborhood about (x0, y0) in R2. Suppose that G(x0, y0) = c and consider the

expression

G(x, y) = c.

If (∂G/∂y)(x0, y0) 6= 0, then there exists a C1 function y = y(x) defined on an interval I about

the point x0 such that:

(a) G(x, y(x)) ≡ c for all x in I ,

(b) y(x0) = y0, and

(c) y′(x0) = −
∂G
∂x

(x0,y0)
∂G
∂y

(x0,y0)
.

Example 6.2.1. Show that the equation x2ey−2y+x = 0 defines y as a function of x in an interval

around the point (−1, 0). Find the derivative of this function at x = −1.

Solution: Define f(x, y) = x2ey − 2y + x. Then f1(x, y) = 2xey + 1, f2(x, y) = x2ey − 2,

and f is C1 everywhere. Also, f(−1, 0) = 0 and f2(−1, 0) = −1 6= 0. By Theorem 6.2.1, the

equation defines y as a C1 function of x in an interval around (−1, 0). Moreover, we have

y′(−1, 0) = − f1(x, y)

f2(x, y)

∣

∣

∣

∣x=−1
y=0

= − 2xey + 1

x2ey − 2

∣

∣

∣

∣x=−1
y=0

= −1.

Example 6.2.2. Consider the equation

f(x, y) ≡ x2 − 3xy + y3 − 7 = 0 (6.5)

about the point (x0, y0) = (4, 3). Notice that f(4, 3) satisfies (6.5). The first order partials are

∂f

∂x
= 2x− 3y and

∂f

∂y
= −3x+ 3y2.

Since (∂f/∂y)(4, 3) = 15 6= 0, Theorem (6.2.1) tells us that (6.5) does indeed define y as a C1

function of x around x0 = 4, y0 = 3. Furthermore,

y′(4, 3) = − 2x− 3y

3y2 − 3x

∣

∣

∣

∣x=4
y=3

=
1

15
.

6.2.1 Several Exogenous Variables

Now consider a case where there exists one equation with one endogenous and several exogenous

variables of the form

G(x1, x2, . . . , xk, y) = c. (6.6)
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Around a given point (x∗1, . . . , x
∗
k, y

∗), we want to vary x = (x1, . . . , xk) and then find a y-value

which corresponds to each such (x1, . . . , xk). In this case, we say that equation (6.6) defines y as a

implicit function of (x1, . . . , xk). Once again, given G and (x∗, y∗), we want to know whether this

functional relationship exists and, if it does, how does y change if any of the xi’s change from x∗i .

Since we are working with a function of several variables (x1, . . . , xk), we will hold all but one of

the xi’s constant and vary one exogenous variable at a time. However, this puts us right back in the

two-variable case that we have been discussing. The natural extension of Theorem (6.2.1) to this

setting is the following.

Theorem 6.2.2 (Implicit Function Theorem-Several Exogenous Variables). Let G(x1, . . . , xk, y)
be a C1 function around the point (x∗1, . . . , x

∗
k, y

∗). Suppose further that (x∗1, . . . , x
∗
k, y

∗) satisfies

G(x∗1, . . . , x
∗
k, y

∗) = c

and
∂G

∂y
(x∗1, . . . , x

∗
k, y

∗) 6= 0.

Then there exists a C1 function y = y(x1, . . . , xk) defined on an open neighborhood N about

(x∗1, . . . , x
∗
k, y

∗) so that:

(a) G (x1, . . . , xk, y(x1, . . . , xk)) = c for all x1, . . . , xk ∈ N ,

(b) y∗ = y(x∗1, . . . , x
∗
k), and

(c) for each index i

∂y

∂xi
(x∗1, . . . , x

∗
k) = −

∂G
∂xi

(x∗1, . . . , x
∗
k, y

∗)
∂G
∂y (x

∗
1, . . . , x

∗
k, y

∗)
. (6.7)

6.2.2 The General Case

Consider the following nonlinear system of m equations and m+ n unknowns defined as

F1(y1, . . . , ym, x1, . . . , xn) = c1

F2(y1, . . . , ym, x1, . . . , xn) = c2
...

...

Fm(y1, . . . , ym, x1, . . . , xn) = cm,

(6.8)

where y1, . . . , ym are endogenous and x1, . . . , xn are exogenous. Totally differentiating (6.8) the

above system of equations about the point (y∗,x∗), we obtain

∂F1

∂y1
dy1 + · · ·+ ∂F1

∂ym
dym +

∂F1

∂x1
dx1 + · · ·+ ∂F1

∂xn
dxn = 0

...
...

∂Fm

∂y1
dy1 + · · ·+ ∂Fm

∂ym
dym +

∂Fm

∂x1
dx1 + · · ·+ ∂Fm

∂xn
dxn = 0,

(6.9)

where all the partial derivatives are evaluated at the point (y∗,x∗). By the Implicit Function Theo-

rem, the linear system (6.9) can be solved for dy1, . . . , dym in terms of dx1, . . . , dxn if and only if
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the coefficient (Jacobian) matrix of the dyi’s,

∂(F1, . . . , Fm)

∂(y1, . . . , ym)
≡







∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂ym






(6.10)

is nonsingular at (y∗,x∗). Since this system is linear, when the coefficient matrix (6.10) is nonsin-

gular, we can use the inverse of (6.10) to solve the system (6.9) for the dyi’s in terms of the dxj’s
and everything else. Thus, in matrix notation we obtain







∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂ym













dy1
...

dym






= −







∂F1

∂x1
· · · ∂F1

∂xn

...
. . .

...
∂Fm

∂x1
· · · ∂Fm

∂xn













dx1
...

dxn






,

which implies






dy1
...

dym






= −







∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂ym







−1





∑n
i=1

∂F1

∂xi
dxi

...
∑n

i=1
∂Fm

∂xi
dxi






. (6.11)

Since the linear approximation (6.9) of the original system (6.8) is a implicit function of the

dyi’s in terms of the dxj’s, the nonlinear system (6.8) defines the yi’s as implicit functions of the

xj’s in a neighborhood of (y∗,x∗). Furthermore, we can use the linear solution of the dyi’s in terms

of the dxj’s, (6.11), to find the derivatives of the yi’s with respect to the xj’s at (x∗,y∗). To compute

∂yk/∂xh for some fixed indices h and k, recall that this derivative estimates the effect on yk of a

one unit increase in xh (dxh = 1). So, we set all the dxj’s equal to zero in (6.9) or (6.11) except

dxh, and then we solve (6.9) or (6.11) for the corresponding dyi’s. Thus, (6.11)) reduces to







dy1
dxh

...
dym
dxh






= −







∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂ym







−1





∂F1

∂xh

...
∂Fm

∂xh






(6.12)

Alternatively, we can apply Cramer’s rule to (6.9) and compute

dyk
dxh

= −

det







∂F1

∂y1
· · · ∂F1

∂xh
· · · ∂F1

∂ym
...

. . .
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂xh
· · · ∂Fm

∂ym







det







∂F1

∂y1
· · · ∂F1

∂yk
· · · ∂F1

∂ym
...

. . .
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂yk
· · · ∂Fm

∂ym
.







(6.13)

The following theorem—the most general form of the Implicit Function Theorem—summarizes

these conclusions.

Theorem 6.2.3. Let F1, . . . , Fm : Rm+n → R1 be C1 functions. Consider the system of equations

F1(y1, . . . , ym, x1, . . . , xn) = c1

F2(y1, . . . , ym, x1, . . . , xn) = c2
...

...

Fm(y1, . . . , ym, x1, . . . , xn) = cm

(6.14)
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as possibly defining y1, . . . , ym as implicit functions of x1, . . . , xn. Suppose that (y∗,x∗) is a

solution of (6.14). If the determinant of the m×m matrix







∂F1

∂y1
· · · ∂F1

∂ym
...

. . .
...

∂Fm

∂y1
· · · ∂Fm

∂ym







evaluated at (y∗,x∗) is nonzero, then there exist C1 functions

y1 = f1(x1, . . . , xn)

...
...

ym = fm(x1, . . . , xn)

defined on a neighborhood N about x∗ such that

F1(f1(x), . . . , fm(x), x1, . . . , xn) = c1

F2(f1(x), . . . , fm(x), x1, . . . , xn) = c1
...

...

Fm(f1(x), . . . , fm(x), x1, . . . , xn) = c1

for all x = (x1, . . . , xn) in N and

y∗1 = f1(x
∗
1, . . . , x

∗
n)

...
...

y∗m = fm(x∗1, . . . , x
∗
n).

Furthermore, one can compute (∂fk/∂xh)(y
∗,x∗) = (∂yk/∂xh)(y

∗,x∗) by setting dxh = 1 and

dxj = 0 for j 6= h in (6.9) and solving the resulting system for dyk. This can be accomplished:

(a) by inverting the nonsingular matrix (6.10) to obtain the solution (6.12) or

(b) by applying Cramer’s rule to (6.9) to obtain the solution (6.13).

Example 6.2.3. Consider the system of equations

F1(x, y, a) ≡ x2 + axy + y2 − 1 = 0

F2(x, y, a) ≡ x2 + y2 − a2 + 3 = 0
(6.15)

around the point x = 0, y = 1, a = 2. If we change a a little to a′ near a = 2, can we find an (x′, y′)
near (0, 1) so that (x′, y′, a′) satisfies these two equations? To answer this question, we need to find

the Jacobian of (F1, F2) (the matrix of partial derivatives with respect to the endogenous variables

x and y) at the point x = 0, y = 1, a = 2

det

(

∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y

)

(0, 1, 2) = det

(

2 2
0 2

)

= 4 6= 0.
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Thus, we can solve system (6.15) for x and y as functions of a near (0, 1, 2). Furthermore, using

Cramer’s rule, we obtain

dy

da
= −

det

(

∂F1

∂x
∂F1

∂a
∂F2

∂x
∂F2

∂a

)

det





∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y





= −
det

(

2x+ ay xy
2x −2a

)

det

(

2x+ ay ax+ 2y
2x 2y

) .

Evaluating at x = 0, y = 1, a = 2, gives

dy

da
(0, 1, 2) = −

det

(

2 0
0 −4

)

det

(

2 2
0 2

) =
8

4
= 2 > 0.

Therefore, if a increases to 2.1, y will increase to 1.2. Let us now use the method of total differen-

tiation to compute the effect on x. Total differentiating the non-linear system (6.15), we obtain

(2x+ ay)dx+ (ax+ 2y)dy + xy da = 0

2x dx+ 2y dy − 2a da = 0.

Evaluating at x = 0, y = 1, a = 2:

2 dx+ 2 dy = 0 da

0 dx+ 2 dy = 4 da.

Clearly, dy = 2 da (as we just computed above) and dx = −dy = −2da. Thus, if a increases to

2.1, x will decrease to −.2.

Example 6.2.4. Consider the following system

Y = C + I +G

C = C(Y − T )

I = I(r)

M s = M(Y, r),

(6.16)

where the nonlinear functions x 7→ C(x), r 7→ I(r), and (Y, r) 7→ M(Y, r) satisfy

0 < C ′(x) < 1, I ′(r) < 0,
∂M

∂Y
> 0,

∂M

∂r
< 0. (6.17)

System (6.16) can be reduced to

Y −C(Y − T )− I(r) = G

M(Y, r) = M s,

where we have defined Y and r as implicit functions of G, M s, and T . Suppose that the current

(G,M s, T ) is (G∗,M s∗, T ∗) and that the corresponding (Y, r)-equilibrium is (Y ∗, r∗). If we vary
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(G,M s, T ) a little, is there a corresponding equilibrium (Y, r) and how does it change? Totally

differentiating system (6.16), we obtain

(

1− ∂C

∂Y

)

dY − ∂I

∂r
dr = dG− ∂C

∂T
dT

∂M

∂Y
dY +

∂M

∂r
dr = dM s

or, in matrix notation,

(

1− ∂C
∂Y −∂I

∂r
∂M
∂Y

∂M
∂r

)

(

dY
dr

)

=

(

dG− ∂C
∂T dT

dM s

)

(6.18)

all evaluated at (Y ∗, r∗, G∗,M s∗, T ∗). The determinant of the coefficient matrix in (6.18),

D ≡
(

1− ∂C

∂Y

)

∂M

∂r
+

∂I

∂r

∂M

∂Y

is negative by (6.17) and therefore nonzero. By Theorem 6.2.3, the system (6.16) does indeed define

Y and r as implicit functions of G, M s, and T around (Y ∗, r∗, G∗,M s∗, T ∗). Inverting (6.18), we

compute
(

∂Y
∂r

)

=
1

D

(

∂M
∂r

∂I
∂r

−∂M
∂Y 1− ∂C

∂Y

)

(

dG− ∂C
∂T dT

dM s

)

.

If we increase government spending G, keeping M s and T fixed, we find

dY

dG
=

1

D

∂M

∂r
and

dr

dG
= − 1

D

∂M

∂Y
,

so both Y and r increase. Notice that using Cramer’s rule on system (6.18) (keeping M s and T
fixed), we obtain

dY

dG
=

1

D
det

(

1 ∂I
∂r

0 ∂M
∂r

)

=
1

D

∂M

∂r

dr

dG
=

1

D
det

(

1− ∂C
∂Y 1

∂M
∂Y 0

)

= − 1

D

∂M

∂Y
,

validating the results we obtained using total differentiation.

Example 6.2.5. Consider the follow problem

Minimize x+ 2y + 4z

subject to x2 + y2 + z2 = 21
(6.19)

The Lagrangian function is

L(x, y, z, µ) = −(x+ 2y + 4z)− µ(21− x2 − y2 − z2)

and the associated first order conditions are

∂L
∂x

= −1 + 2µx
set
= 0
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∂L
∂y

= −2 + 2µy
set
= 0

∂L
∂z

= −4 + 2µz
set
= 0

∂L
∂µ

= −21 + x2 + y2 + z2
set
= 0.

The first three equations can be solved to obtain x = 1/2µ, y = 1/µ, and z = 2/µ. Substituting

these results into the fourth equation yields µ2 = 1/4. Thus, there are two potential solutions:

(1, 2, 4, 1/2) and (−1,−2,−4,−1/2). The associated bordered Hessian is









Lxx Lxy Lxz Lxµ

Lyx Lyy Lyz Lyµ

Lzx Lzy Lzz Lzµ

Lµx Lµy Lµz Lµµ









=









2µ 0 0 2x
0 2µ 0 2y
0 0 2µ 2z
2x 2y 2z 0









.

Evaluated at (1, 2, 4, 1/2), ∆3 = −8µ(y2 + z2) = −80 and ∆4 = −16µ2(x2 + y2 + z2) =
−84. Since (−1)2∆3 < 0, this potential solution fails the second order condition. Evaluated at

(−1,−2,−4,−1/2), ∆3 = 80 and ∆4 = −84. This passes the second order test since (−1)2∆3 =
80 > 0 and (−1)3∆4 = 84 > 0. Thus, (x∗, y∗, z∗) = (−1,−2,−4) is the global maximizer of f
with value −21 (the constraint set is compact).

If we slightly alter the constraint, so that the problem (6.19) becomes

Minimize x+ 2y + 4z

subject to x2 + y2 + z2 = 21 + w,

how does the optimal choice of x change as w changes from w = 0? The endogenous variables are

x, y, z, and µ. The exogenous variable is w. The first order conditions remain the same except for

the constraint (∂L/∂µ), which becomes

∂L
∂µ

= −21− w + x2 + y2 + z2 = 0.

When w = 0, we already know (−1,−2,−4,−1/2) is the global maximizer (minimizer for the

original problem), since it satisfies the first order conditions. Moreover, the bordered Hessian at this

point,

H̄ ≡









−1 0 0 −2
0 −1 0 −4
0 0 −1 −8
−2 −4 −8 0









,

remains the same and its determinant: ∆4 = −84 6= 0. Thus, we can apply Theorem 6.2.3 to obtain









dx
dw
dy
dw
dz
dw
dµ
dw









= −H̄−1











∂2L
∂x∂w
∂2L
∂y∂w
∂2L
∂z∂w
∂2L
∂µ∂w











= −H̄−1









0
0
0
−1









=









−1/42
−1/21
−2/21
1/84









.

Although we are not interested in dµ, µ was one of the endogenous variables in the first order

conditions, so it must be included in this stage, making H̄ a 4× 4 matrix. Also, note that almost all

terms can be read off from the problem where w = 0.
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Alternatively we could apply Cramer’s rule to obtain

dx

dw
= −

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 −2
0 −1 0 −4
0 0 −1 −8
−1 −4 −8 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 0 −2
0 −1 0 −4
0 0 −1 −8
−2 −4 −8 0

∣

∣

∣

∣

∣

∣

∣

∣

= − −2

−84
= − 1

42
.

Thus, a one unit increase in w requires a reduction in x by 1/42 units.
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Chapter 7

Introduction to Complex Numbers

7.1 Basic Operations

7.1.1 Sums and Products

It is customary to denote a complex number (x, y) by z so that

z = (x, y).

The real numbers x and y are, moreover, known as the real and imaginary parts of z, respectively;

and we write

Re z = x and Im z = y.

Two complex numbers z1 = (x1, y1) and z2 = (x2, y2) are equal whenever they have the same real

and imaginary parts. That is, when x1 = x2 and y1 = y2. The sum z1 + z2 and product z1z2 of two

complex numbers is defined in the following manner:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1)(x2, y2) = (x1x2 − y1y2, y1x2 + x1y2).

Note that the operations defined in the above equations become the usual operations of addition and

multiplication when restricted to the real numbers:

(x1, 0) + (x2, 0) = (x1 + x2, 0)

(x1, 0)(x2, 0) = (x1x2, 0).

Thus, the complex number system is a natural extension of the real number system. Any complex

number z = (x, y) can be written z = (x, 0) + (0, y) and it is easy to see that (0, 1)(y, 0) = (0, y).
Hence,

z = (x, 0) + (0, 1)(y, 0)

and, if we think of a real number as either x or (x, 0) and let i denote the pure imaginary number

(0, 1), it is clear that

z = x+ iy.

Also, we find that

i2 = (0, 1)(0, 1) = (−1, 0) or i2 = −1.
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7.1.2 Moduli

The modulus or absolute value of a complex number, z, is defined as the nonnegative real number
√

x2 + y2 and is denoted by |z|; that is,

|z| =
√

x2 + y2.

Geometrically, the number |z| is the distance between the point (x, y) and the origin, or the length

of the vector representing z. It reduces to the absolute value in the real number system when y = 0.

Note that while the inequality z1 < z2 is meaningless unless both z1 and z2 are real, the statement

|z1| < |z2| means that the point z1 is closer to the origin than the point z2.

7.1.3 Complex Conjugates

The complex conjugate, or simply the conjugate, of a complex number z = x+ iy is defined as the

complex number x− iy and is denoted z; that is

z = x− iy.

The number z is represented by the point (x,−y), which is the reflection about the real axis of the

point (x, y) representing z. Note the following properties of conjugates and moduli

z = z and |z| = |z|.

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2)− i(y1 + y2) = (x1 − iy1) + (x2 − iy2) = z1 + z2.

Thus, the conjugate of the sum is the sum of the conjugates. Similar conclusions can be drawn for

differences, products, and quotients. That is

z1 − z2 = z1 − z2

z1z2 = z1 z2
(

z1
z2

)

=
z1
z2

(z2 6= 0).

The sum z + z of a complex number z = x + iy and its conjugate z = x − iy is the real number

2x, and the difference z − z is the pure imaginary number 2iy. Hence

Re z =
z + z

2
and Im z =

z − z

2i
.

An important identity relating the conjugate of a complex number z = x+ iy to its modulus is

zz = |z|2,

where each side is equal to x2 + y2. Using the above property, we can establish the fact that the

modulus of the product is the product of the modulus. That is

|z1z2| = |z1||z2|,

which can be seen by noting that

|z1z2|2 = (z1z2)(z1z2) = (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2

and recalling that the modulus is never negative.
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Example 7.1.1. Reduce each of the following quantities to a real number

(a) 1+2i
3−4i +

2−i
5i

Solution: Multiply each term by the conjugate of its denominator

(1 + 2i)

(3− 4i)

(3 + 4i)

(3 + 4i)
+

(2− i)

(5i)

(−5i)

(−5i)
=

10i − 5

25
− 10i + 5

25
= −2

5
.

(b) 5i
(1−i)(2−i)(3−i)

Solution: Multiply by the conjugate of each of the terms in the denominator

5i

(1− i)(2 − i)(3− i)

(1 + i)(2 + i)(3 + i)

(1 + i)(2 + i)(3 + i)
=

25(i− 1)(i + 1)

100
= −1

2
.

(c) (1− i)4

Solution: Note that (1− i)2 = −2i. Thus,

(1− i)4 = (−2i)2 = −4.

7.2 Exponential Form

Notice that any complex number, z, can be written as

z ≡ α+ iβ =
√

α2 + β2

(

α
√

α2 + β2
+ i

β
√

α2 + β2

)

.

Thus, redefining z in terms of polar coordinates, we obtain

z = α+ iβ = r[cos(θ) + i sin(θ)], (7.1)

where cos(θ) = α/r and sin(θ) = β/r as illustrated in figure 7.1. In section 7.1.2, we saw that

the real number r is not allowed to be negative and is the length of the radius vector for z; that is

r = |z|. The real number θ represents the angle, measured in radians, that z makes with the positive

real axis. As in calculus, θ has an infinite number of possible values, including negative ones, that

differ by multiples of 2π. Those values can be determined from the equation tan(θ) = β/α, where

the quadrant containing the point corresponding to z must be specified. Each value of θ is called

an argument of z, and the set of all such values is denoted by arg z. The principle value of arg z,

denoted by Arg z, is the unique value Θ such that −π < Θ ≤ π. Note that

arg z = Arg z + 2πn. (n = 0,±1,±2, . . .)

Example 7.2.1. The complex number z = −1 − i, which lies in the third quadrant, has principle

argument −3π/4. That is,

Arg(−1− i) = −3π

4
.

It must be emphasized that, because of the restriction −π < Θ ≤ π of the principle argument Θ, it

is not true that Arg(−1− i) = 5π/4.
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Figure 7.1: Complex Number in Polar Form

Imaginary

Real

The symbol eiθ, or exp(iθ), is defined by means of Euler’s formula as

eiθ = cos θ + i sin θ,

where θ is measured in radians.

Proof. In order to derive this result, first recall the Maclaurin expansions of the functions ex, cos x,

and sinx given by:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · ,

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

For a complex number z, define each of the functions by the above series, replacing the real variable

x with the complex variable z. We then find that

eiz = 1 + iz +
(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+

(iz)6

6!
+

(iz)7

7!
+

(iz)8

8!
+ · · ·

= 1 + iz − z2

2!
− iz3

3!
+

z4

4!
+

iz5

5!
− z6

6!
− iz7

7!
+

z8

8!
+ · · ·

=

(

1− z2

2!
+

z4

4!
− z6

6!
+

z8

8!
− · · ·

)

+ i

(

z − z3

3!
+

z5

5!
− z7

7!
+ · · ·

)

= cos z + i sin z.

This result enables us to write the polar form (7.1) more compactly in exponential form as

z = reiθ.
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Example 7.2.2. The complex number z = −1− i in the previous example has exponential form

−1− i =
√
2 exp [i(−3π/4)] .

This expression is, of course, only one of an infinite number of possibilities for the exponential form

of z.

It is geometrically obvious that

eiπ = −1 e−iπ/2 = −i e−i4π = 1

Note too that the equation

z = Reiθ

is a parametric representation of the circle |z| = R centered at the origin with radius R.

Another nice aspect of complex numbers written in polar form is that their powers are easily

computed. For example

z2 = (α+ iβ)2 = r2 [cos(θ) + i sin(θ)]2

= r2
[

cos2(θ) + 2 cos(θ)i sin(θ)− sin2(θ)
]

= r2 [cos(2θ) + i sin(2θ)] ,

using the double angle formulas, which state that cos(2a) = cos2(a) − sin2(a) and sin(2a) =
2 sin(a) cos(a). Continuing in this manner, we obtain the following result.

Definition 7.2.1 (DeMoivre’s formula). For complex number z = α+ iβ with polar representation

r [cos(θ) + i sin(θ)] and any positive integer n,

zn = (α+ iβ)n = rn [cos(nθ) + i sin(nθ)] . (7.2)

This result can alternatively be derived in a much simpler manner by noting that (reiθ)n = rneinθ.

Example 7.2.3. In order to put (
√
3 + i)7 is rectangular form, one need only write

(
√
3 + i)7 = (2eiπ/6)7 = 27ei7π/6 = (26eiπ)(2eiπ/6) = −64(

√
3 + i).

7.3 Complex Eigenvalues

Complex eigenvalues of real matrices occur in complex conjugate pairs. That is, if z = α+ iβ is a

root of the characteristic polynomial, so is z̄ = α− iβ. To see this, consider a general 2× 2 matrix

A given by

A =

[

a b
c d

]

.

Then the eigenvalues of the matrix A can be found by solving the following equation

det(A− λI) = det

(

a− λ b
c d− λ

)

= (a− λ) (d− λ)− cb
set
= 0.

The associated roots are then given by

λ =
a+ d

2
± 1

2

√

(a+ d)2 − 4(ad − bc)
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or, after simplification,

λ =
a+ d

2
± 1

2

√

(a− d)2 + 4bc.

If the discriminant (the expression under the square root) is negative, we will have complex roots.

That is, if (a− d)2 + 4bc < 0, then the roots are complex (conjugate) pairs of the form

λ1 =
a+ d

2
+

1

2
i
√

|(a− d)2 + 4bc|

λ2 = λ1 =
a+ d

2
− 1

2
i
√

|(a− d)2 + 4bc|.

The fact that complex eigenvalues come in complex conjugate pairs and the fact that λ 6= λ, imply

that complex eigenvalues of a 2×2 system are always distinct. It is only with 4×4 matrices that the

possibility of repeated complex eigenvalues arises. We next show that complex eigenvectors also

come in conjugate pairs.

Suppose the general form an eigenvalue of matrix A is given by λ = α + iβ. Then the corre-

sponding eigenvector, w, is a non-zero solution to

[A− (α+ iβ) I]w = 0,

or reformulated

Aw = (α+ iβ)w. (7.3)

Now write the complex vector w in its general form: w = u+ iv, where u and v are real vectors.

Then (7.3) becomes

A (u+ iv) = (α+ iβ) (u+ iv) . (7.4)

Applying the conjugate to both sides and recalling that for any two complex numbers z1 and z2 it

holds that z1z2 = z1 z2, we obtain

A (u+ iv) = (α+ iβ) (u+ iv)

→ A (u− iv) = (α− iβ) (u− iv)

→ Aw = (α− iβ)w. (7.5)

Then from (7.4) and (7.5) we see that complex eigenvectors also come in conjugate pairs. More

specifically, if u + iv is an eigenvector for α + iβ, then u − iv is an eigenvector for α − iβ. The

following theorem summarizes the discussion thus far.

Theorem 7.3.1. Let A be a k × k matrix with real entries. If λ = α+ iβ is an eigenvalue of A, so

is its conjugate λ = α− iβ. If (u+ iv) is an eigenvector for eigenvalue λ = α+ iβ, then (u− iv)
is an eigenvector for eigenvalue λ̄ = α − iβ. If k is an odd number, then A must have at least one

real eigenvalue.

Example 7.3.1. Consider the 2× 2 matrix

A =

[

1 1
−9 1

]

.

Its characteristic polynomial is given by

p(λ) = λ2 − 2λ+ 10,
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and its corresponding roots are

λ1,2 = 1± 1

2

√

4− 4(10) = 1± 1

2

√
−36 = 1± 3i.

Thus, we have two complex eigenvalues that are complex conjugates. Use λ1 = 1 + 3i to calculate

the first eigenvector for matrix A.

[A− (1 + 3i)I]w =

[

−3i 1
−9 −3i

] [

w1

w2

]

=

[

0
0

]

.

Row-reducing the coefficient matrix in the above equation implies −3iw1 + w2 = 0. Normalizing

w1 to 1, we get w2 = 3i. Thus, the first eigenvector is

w1 =

[

1
3i

]

=

[

1
0

]

+ i

[

0
3

]

.

Since we have already seen that eigenvectors or complex eigenvalues come in conjugate pairs, it

must be the case that the second eigenvector is given by

w2 =

[

1
0

]

− i

[

0
3

]

.

Note that we could have also found the second eigenvector using the second eigenvalue λ2 = 1−3i.
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Chapter 8

Linear Difference Equations and Lag

Operators

8.1 Lag Operators

The backshift or lag operator is defined by

Lxt = xt−1

Lnxt = xt−n for n = . . . ,−2,−1, 0, 1, 2, . . . .

Multiplying a variable xt by Ln thus gives the value of x shifted back n periods. Notice that if

n < 0, the effect of multiplying xt by Ln is to shift x forward in time by n periods.

Consider polynomials in the lag operator given by

A(L) = a0 + a1L+ a2L
2 + · · · =

∞
∑

j=0

ajL
j,

where the aj’s are constant and L0 ≡ 1. Operating on xt with A(L) yields a moving sum of x′s:

A(L)xt = (a0 + a1L+ a2L
2 + · · · )xt

= a0xt + a1xt−1 + a2xt−2 + · · ·

=

∞
∑

j=0

ajxt−j .

To take a simple example of a rational polynomial in L, consider

A(L) =
1

1− λL
= 1 + λL+ λ2L2 + · · · , (8.1)

which holds assuming the normal expansion for an infinite geometric series applies. Note that this

can be verified by multiplying both sides of the equality by (1 − λL). However, this result is

sometimes only of practical use when |λ| < 1. To see why, consider the following infinite sum

1

1− λL
xt =

∞
∑

j=0

λjxt−j ,
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for the case in which the path of xt is constant at x. Then,

1

1− λL
xt = x

∞
∑

j=0

λj .

and if |λ| > 1, we get that the above sum is unbounded. In some instances, we will want a solution

infinitely far back in time and where the infinite sum is bounded. Thus, we sometimes require

|λ| < 1. It is useful to realize that we can use an alternative expansion for the geometric polynomial

1/(1 − λL). Formally, if the normal expansion for this infinite geometric series applies, then

1

1− λL
=

(−λL)−1

1− (λL)−1
= − 1

λL

(

1 +
1

λL
+

1

(λL)2
+ · · ·

)

= − 1

λ
L−1 −

(

1

λ

)2

L−2 −
(

1

λ

)3

L−3 − · · · , (8.2)

which is particularly useful when |λ| > 1. In this case, operating on xt gives

1

1− λL
xt = − 1

λ
xt+1 −

(

1

λ

)2

xt+2 − · · · = −
∞
∑

j=1

(

1

λ

)j

xt+j ,

which shows [1/(1 − λL)]xt to be a geometrically declining weighted sum of future values of x.

Notice that for this infinite sum to be finite for a constant time path xt+j = x for all j and t, the

series −
∑∞

j=1(1/λ)
j must be convergent, which requires that |1/λ| < 1 or, equivalently, |λ| > 1.

8.2 First-Order Difference Equations

A linear difference equation can be defined as an equation that relates the endogenous (determined

within the model) variable yt to its previous values linearly. The simplest one is a first-order scalar

linear difference equation such as

yt = λyt−1 + bxt + a, (8.3)

where xt is an exogenous (determined outside the model) variable and a is a constant. This is a first-

order difference equation, since yt is dependent on only its first lag yt−1. Here, we are interested in

finding a solution of yt in terms of current, past, or future values of the exogenous variable xt and

(less importantly) the constant a. Put it different, we want to characterize the endogenous sequence

yt in terms of the exogenous sequence xt.
Using the lag operator defined above, we can rewrite (8.3) as follows:

(1− λL)yt = bxt + a. (8.4)

Operating on both sides of this equation by (1 − λL)−1, we can obtain a particular solution for

(8.4), denoted by ŷt, as follows:

ŷt =
bxt

1− λL
+

a

1− λ
. (8.5)

Note that since a is a constant, a/(1 − λL) = a/(1 − λ) irrespective of the size of |λ| (This can

be verified by considering the expansion given in (8.1) when |λ| < 1 and the expansion given in

(8.2) when |λ| > 1). In order to obtain the general solution, we need to add a term to (8.5). For this
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purpose, suppose that ỹ = ŷ + wt is also a solution to (8.4). Then, using the particular solution to

(8.4), we obtain

(1− λL)ỹ = (1− λL)ŷ + wt − λwt−1

= bxt + a+ wt − λwt−1.

Therefore, as long as wt = λwt−1, ỹt is also a solution. Note that we can iterate on this condition

to obtain

wt = λwt−1 = λ2wt−2 = λ3wt−3 = · · · = λtw0,

where w0 ≡ c, an arbitrary initial value. Hence, the general solution to (8.3) is given by

yt =
bxt

1− λL
+

a

1− λ
+ λtc

= b

∞
∑

j=0

λjxt−j +
a

1− λ
+ λtc, (8.6)

where c is an arbitrary constant. Notice that for yt, defined by (8.6), to be finite λjxt−j must be

small for large j. That is, we require

lim
n→∞

∞
∑

j=n

λjxt−j = 0 for all t.

For the case of xt−j = x for all j and t, the above condition requires |λ| < 1. Notice also that the

infinite sum a
∑∞

i=0 λ
j in (8.6) is also finite only if |λ| < 1, in which case it equals a/(1 − λ) for

a 6= 0 and 0 otherwise. Tentatively, assume that |λ| < 1.

In order to analyze (8.6), rewrite the equation for t ≥ 1 as

yt = a
t−1
∑

j=0

λj + a
∞
∑

j=t

λj + b
t−1
∑

j=0

λjxt−j + b
∞
∑

j=t

λjxt−j + λtc

=
a(1− λt)

1− λ
+

aλt

1− λ
+ b

t−1
∑

j=0

λjxt−j + bλt
∞
∑

j=0

λjx0−j + λtc

=
a(1− λt)

1− λ
+ b

t−1
∑

j=0

λjxt−j + λt





a

1− λ
+ b

∞
∑

j=0

λjx0−j + λ0c





=
a(1− λt)

1− λ
+ b

t−1
∑

j=0

λjxt−j + λty0 (using (8.6))

=
a

1− λ
+ λt

[

y0 −
a

1− λ

]

+ b
t−1
∑

j=0

λjxt−j , t ≥ 1.

Consider the special case in which xt = 0 for all t. Under this condition, we obtain

yt =
a

1− λ
+ λt

[

y0 −
a

1− λ

]

. (8.7)
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Notice that if the initial condition y0 = a/(1 − λ), then yt = y0. In the case, y is constant across

all future time periods and a/(1− λ) is known as a stationary point. Moreover, it is easy to see that

for |λ| < 1, the second term in (8.7) tends to zero and thus

lim
t→∞

yt =
a

1− λ
.

This shows that the system is stable, tending to approach the stationary value as time passes.

The difference equation (8.4) can also be solved using the alternative representation of (1 −
λL)−1 given in (8.2). Using this this result, the general solution is given by

yt =
(−λL)−1

1− (λL)−1
a+

(−λL)−1

1− (λL)−1
bxt + λtc

=
a

1− λ
− b

∞
∑

j=1

λ−jxt+j + λtc. (8.8)

The equivalence of the solutions (8.6) and (8.8) will hold whenever

b

1− λL
xt and

(λL)−1

1− (λL)−1
bxt

are both finite. However, it is often the case that one of these two conditions fails to hold. For

example, if the sequence {xt} is bounded, this is sufficient to imply that {[b/(1 − λL)]xt} is a

bounded sequence if |λ| < 1, but not sufficient to imply that

(λL)−1

1− (λL)−1
bxt

is a convergent sum for all t. Similarly, if |λ| > 1, boundedness of the sequence {xt} is sufficient

to imply that

{

(λL)−1

1− (λL)−1
bxt

}

is a bounded sequence, but fails to guarantee finiteness of b/(1− λL)xt. In instances where one of

b

1− λL
xt or

(λL)−1

1− (λL)−1
bxt

is always finite and the other is not, we shall take our solution to the first-order difference equation

(8.4) as either (8.6), where the backward sum in xt is finite, or (8.8), where the forward sum in xt is

finite. This procedure assures us that we shall find the unique solution of (8.4) that is finite for all t,
provided that such a solution exists.

If we want to guarantee that the sequence {yt} given by (8.6) or (8.8) is bounded for all t, it is

evident that we must set c = 0. This is necessary since if λ > 1 and c > 0,

lim
t→∞

cλt = ∞,

while if λ < 1 and c > 0,

lim
t→−∞

cλt = ∞.
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Thus, when |λ| < 1, the bounded sequence yt from (8.6) can be obtained by following the backward

representation with the initial condition c = 0 and is given by

yt = b
(

1 + λL+ (λL)2 + (λL)3 + · · ·
)

xt +
a

1− λ

= b
∞
∑

j=0

λjxt−j +
a

1− λ
.

On the other hand, when |λ| > 1, we need to use the forward representation in order to get the

bounded sequence yt as follows:

yt =
(−λL)−1

1− (λL)−1
bxt +

(−λL)−1

1− (λL)−1
a

= −b

∞
∑

j=1

λ−jxt+j +
a

1− λ
,

again setting c = 0. In general, the convention is to solve stable roots (|λ| < 1) backward and

unstable roots (|λ| > 1) forward.

8.3 Second-Order Difference Equations

A second-order difference equation relates the endogenous variable yt to its previous two values,

yt−1 and yt−2, linearly. Consider following second-order difference equation given by

yt = φ1yt−1 + φ2yt−2 + bxt + a, (8.9)

where xt is again an exogenous sequence of real numbers for t = . . . ,−1, 0, 1, . . .. Using the lag

operator, we can write (8.9) as follows:

(1− φ1L− φ2L
2)yt = bxt + a.

It is convenient to write the polynomial 1− φ1L− φ2L
2 in an alternative way, given by the factor-

ization

1− φ1L− φ2L
2 = (1− λ1L)(1− λ2L)

= 1− (λ1 + λ2)L+ λ1λ2L
2,

where λ1λ2 = −φ2 and λ1 + λ2 = φ1. To see how λ1 and λ2 are related to the roots or zeros of the

polynomial A(z) = 1− φ1z − φ2z
2, notice that

(1− λ1z)(1 − λ2z) = λ1λ2

(

1

λ1
− z

)(

1

λ2
− z

)

.

Note that we use a function of a number z (possibly complex) instead of the lag operator L since

it does not really make much to talk about roots or zeros of a polynomial that is a function of a lag

operator. If we set the above equation to zero in order to solve for its roots, it is clear that the equation

is satisfied at the two roots z1 = 1/λ1 and z2 = 1/λ2. Given the polynomial A(z) = 1−φ1z−φ2z
2,

the roots 1/λ1 and 1/λ2 are found by solving the characteristic equation

1− φ1z − φ2z
2 = 0
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for two values of z. Given that λi = z−1
i for i = 1, 2, multiplying the above equation by z−2 yields

z−2 − z−1φ1 − φ2 = λ2 − φ1λ− φ2 = 0.

Applying the quadratic formula then gives

λi =
φ1 ±

√

φ2
1 + 4φ2

2
,

which enables us to obtain the reciprocals of λ1 and λ2 for given values of φ1 and φ2.

8.3.1 Distinct Real Eigenvalues

General Solution

When λ1 6= λ2 and λi 6= 1 for all i, the second order difference equation (8.9) can be written as

(1− λ1L)(1− λ2L)yt = bxt + a. (8.10)

Thus, the general solution to (8.10) is given by

yt =
1

(1− λ1L)(1− λ2L)
bxt +

a

(1− λ1)(1− λ2)
+ λt

1c1 + λt
2c2, (8.11)

where c1 and c2 are any constants that can be verified by noticing

(1− λ1L)(1− λ2L)c1λ
t
1 = 0 and (1− λ1L)(1 − λ2L)c2λ

t
2 = 0.

Particular Solution

If both eigenvalues are distinct as in (8.11), then the above coefficient can be written as

1

(1− λ1L)(1− λ2L)
=

1

λ1 − λ2

(

λ1

1− λ1L
− λ2

1− λ2L

)

. (8.12)

Thus, if either a = 0 or the magnitude of both eigenvalues is strictly less than unity (that is, if

|λ1| < 1 and |λ2| < 1), (8.11) can be written as

yt =
a

(1− λ1)(1− λ2)
+

1

λ1 − λ2

(

λ1

1− λ1L
− λ2

1− λ2L

)

bxt + λt
1c1 + λt

2c2

= a

∞
∑

j=0

λj
1

∞
∑

j=0

λj
2 +

λ1b

λ1 − λ2

∞
∑

j=0

λj
1xt−j −

λ2b

λ1 − λ2

∞
∑

j=0

λj
2xt−j + λt

1c1 + λt
2c2 (8.13)

provided that

lim
n→∞

∞
∑

j=n

λj
ixt−j = 0, for all t

for i = 1, 2. Note that this stipulation is needed so that the corresponding geometric sums are finite.

In order to analyze (8.13), let’s first consider the special case where a = 0, so that this equation

holds regardless of the magnitude of λi. Then rewriting (8.13) for t ≥ 1 gives

yt =
λ1b

λ1 − λ2

t−1
∑

j=0

λj
1xt−j −

λ2b

λ1 − λ2

t−1
∑

j=0

λj
2xt−j +

λ1b

λ1 − λ2

∞
∑

j=t

λj
1xt−j

110



A. W. Richter 8.3. SECOND-ORDER DIFFERENCE EQUATIONS

− λ2b

λ1 − λ2

∞
∑

j=t

λj
2xt−j + λt

1c1 + λt
2c2

=
λ1b

λ1 − λ2

t−1
∑

j=0

λj
1xt−j −

λ2b

λ1 − λ2

t−1
∑

j=0

λj
2xt−j + λt

1θ0 + λt
2η0,

where

θ0 ≡







c1 +
λ1b

λ1 − λ2

∞
∑

j=0

λj
1x0−j







and η0 ≡







c2 −
λ2b

λ1 − λ2

∞
∑

j=0

λj
2x0−j







.

Thus, for the case in which xt = 0 for t ≥ 1, we obtain

yt = λt
1θ0 + λt

2η0. (8.14)

If θ0 = η0 = 0, then yt = 0 for all t ≥ 1, regardless of the values of λ1 and λ2. Thus, y = 0
is the stationary point or long-run equilibrium value of (8.14). If λ1 and λ2 are real then limt→∞
will equal its stationary point if and only if both |λ1| < 1 and |λ2| < 1. If one or both or the λ’s

exceed one in absolute value, the behavior of y will eventually be dominated by the term in (8.14)

associated with the λ that is larger in absolute value.

Now let’s return to the more general case. If we are interested in a bounded sequence {yt}
mapped from a bounded sequence {xt}, then we need to set both of the constants c1 and c2 to zero,

and focus on the associated particular solution. If the magnitudes of both eigenvalues are strictly

less than unity, that is, if |λ1| < 1 and |λ2| < 1, then the bounded solution to (8.9) is given by

yt =
a

(1− λ1)(1− λ2)
+

λ1b

λ1 − λ2

∞
∑

j=0

λj
1xt−j −

λ2b

λ1 − λ2

∞
∑

j=0

λj
2xt−j .

If, without loss of generality, |λ1| < 1 and |λ2| > 1, then we can write

1

(1− λ1L)(1− λ2L)
=

1

λ1 − λ2

(

λ1

1− λ1L
+

L−1

1− (λ2L)−1

)

=
λ1

λ1 − λ2

∞
∑

j=0

(λ1L)
j +

λ2

λ1 − λ2

∞
∑

j=1

(λ2L)
−j .

Thus, in this case, the bounded solution to (8.9) is given by

yt =
a

(1− λ1)(1− λ2)
+

λ1b

λ1 − λ2

∞
∑

j=0

λj
1xt−j +

λ2b

λ1 − λ2

∞
∑

j=1

λ−j
2 xt+j .

Finally, if |λ1| > 1 and |λ2| > 1, then we can write

1

(1− λ1L)(1− λ2L)
=

1

λ1 − λ2

( −L−1

1− (λ1L)−1
+

L−1

1− (λ2L)−1

)

= − λ1

λ1 − λ2

∞
∑

j=1

(λ1L)
−j +

λ2

λ1 − λ2

∞
∑

j=1

(λ2L)
−j.

Therefore, in this final case, the bounded solution to (8.9) is given by

yt =
a

(1− λ1)(1− λ2)
− λ1b

λ1 − λ2

∞
∑

j=1

λ−j
1 xt+j +

λ2b

λ1 − λ2

∞
∑

j=1

λ−j
2 xt+j .
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8.3.2 Complex Eigenvalues

Recall that if one eigenvalue turns out to be a complex number, then the other eigenvalue is its

complex conjugate. That is, if λ1 = α+ iβ, then λ2 = α− iβ, where

λ1 + λ2 = 2α = φ1, λ1λ2 = α2 + β2 = −φ2, |λi| =
√

α2 + β2 ∀ i.

Moreover, using the useful polar representation defined in section 7.2, we have

λ1 = reiw = r(cosw + i sinw), λ2 = re−iw = r(cosw − i sinw),

where r =
√

α2 + β2 and tanw = β/α. Finally notice that

λ1 + λ2 = r(eiw + e−iw) = 2r cosw and λ1 − λ2 = r(eiw − e−iw) = 2ri sinw.

Returning to the special case where a = 0 and xt = 0, when the eigenvalues are complex, (8.14),

becomes

yt = θ0(re
iw)t + η0(re

−iw)t

= θ0(r
teiwt) + η0(r

te−iwt)

= θ0r
t[coswt+ i sinwt] + η0r

t[coswt− i sinwt]

= (θ0 + η0)r
t coswt+ i(θ0 − η0)r

t sinwt.

Since yt must be a real number for all t, it follows that θ0 + η0 must be real and θ0 − η0 must be

imaginary. Therefore, θ0 and η0 must be complex conjugates, say θ0 = peiθ and η0 = pe−iθ. Thus,

we can write

yt = peiθrteiwt + pe−iθrte−iwt = prt[ei(wt+θ) + e−i(wt+θ)]

= prt[cos(wt+ θ) + i sin(wt+ θ)

+ cos(−(wt+ θ)) + i sin(−(wt+ θ))]

= 2prt cos(wt+ θ),

where we have made use of the fact that cos is an even function and sin is an odd function (i.e.

for any input x, cos(x) = cos(−x) and sin(−x) = − sin(x)). The path of yt oscillates with a

frequency determined by w. The dampening factor, rt, is determined by the amplitude, r, of the

complex roots. When r < 1, the stationary point of the difference equation, yt = 0, is approached

as t → ∞. Moreover, as long as w 6= 0, the system displays damped oscillations. If r = 1, yt
displays repeated oscillations of unchanging amplitude and the solution is periodic. If r > 1 the

path of yt displays explosive oscillations, unless the initial conditions are say, y0 = 0 and y1 = 0 so

that y starts out at the stationary point for two successive values.

Now if we once again consider the more general case where we are interested in a bounded

sequence {yt} mapped from a bounded sequence {xt}, we need to set both of the constants c1
and c2 to zero, and focus on the associated particular solution. If we note that moduli of complex

eigenvalues are same, then when |λ| < 1, we can write

1

(1− λ1L)(1 − λ2L)
=

λ1

λ1 − λ2

∞
∑

j=0

(λ1L)
j − λ2

λ1 − λ2

∞
∑

j=0

(λ2L)
j

=
1

λ1 − λ2

∞
∑

j=0

(

λj+1
1 − λj+1

2

)

Lj
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=
1

reiw − re−iw

∞
∑

j=0

[

(reiw)j+1 − (re−iw)j+1
]

Lj

=
1

2ri sinw

∞
∑

j=0

2rj+1i sin[w(j + 1)]Lj

=

∞
∑

j=0

rj
sin[w(j + 1)]

sinw
Lj .

Thus, the bounded solution to (8.9) is given by

yt = a

∞
∑

j=0

rj
sin[w(j + 1)]

sinw
+ b

∞
∑

j=0

rj
sin[w(j + 1)]

sinw
xt−j .

If, on the other hand, |λ| > 1, we can write

1

(1− λ1L)(1 − λ2L)
= − λ1

λ1 − λ2

∞
∑

j=1

(λ1L)
−j +

λ2

λ1 − λ2

∞
∑

j=1

(λ2L)
−j

= − 1

λ1 − λ2

∞
∑

j=0

(

λ−j
1 − λ−j

2

)

L−(j+1)

= −
∞
∑

j=0

r−(j+1) sin(wj)

sinw
L−(j+1).

Thus, in this case, the bounded solution to (8.9) is given by

yt = −a

∞
∑

j=0

r−(j+1) sin(wj)

sinw
− b

∞
∑

j=0

r−(j+1) sin(wj)

sinw
xt+j+1.

8.3.3 Stability Conditions for Distinct Eigenvalues

Recall that the roots of (8.9) are given by

λi =
φ1 ±

√

φ2
1 + 4φ2

2
.

For the roots to be complex, the discriminant must be negative, i.e.,

φ2
1 + 4φ2 < 0,

which implies that φ2 is negative. When the above condition is satisfied, the roots are given by

λ1 =
φ1

2
+ i

√

−(φ2
1 + 4φ2)

2
≡ a+ ib, λ2 =

φ1

2
− i

√

−(φ2
1 + 4φ2)

2
≡ a− ib.

Once again, recall that in polar form

a+ ib = r[cosw + i sinw] = reiw,
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Figure 8.1: Second Order Difference Equation: Regions of Stability

where r ≡
√
a2 + b2 and tanw = β/α. Thus we have that

r =

√

(

φ1

2

)2

− (φ2
1 + 4φ2)

4
=
√

−φ2.

For the oscillations to be damped, meaning that in the long-run the difference equation will be

stable, we require that r =
√
−φ2 < 1, which requires that φ2 > −1.

If the roots are real, the difference equation will be stable if both roots are less that one in

magnitude. This requires

−1 <
φ1 +

√

φ2
1 + 4φ2

2
< 1 and − 1 <

φ1 −
√

φ2
1 + 4φ2

2
< 1.

Note that it is sufficient to find conditions such that statement on the left hand side is less than unity

while the condition on the right hand side is greater than minus one. The former condition requires

1

2

(

φ1 +
√

φ2
1 + 4φ2

)

< 1 →
√

φ2
1 + 4φ2 < 2− φ1

→ φ2
1 + 4φ2 < 4 + φ2

1 − 4φ1 → φ1 + φ2 < 1.

The latter condition requires

1

2

(

√

φ2
1 + 4φ2 − φ1

)

< 1 →
√

φ2
1 + 4φ2 < 2 + φ1

→ φ2
1 + 4φ2 < 4 + φ2

1 + 4φ1 → φ2 − φ1 < 1.

Therefore, when φ2 > −1, φ1 + φ2 < 1, and φ2 − φ1 < 1 hold, the roots, regardless of whether

they are real (φ2
1 +4φ2 ≥ 0) or complex (φ2

1 +4φ2 < 0), will yield a stable second order difference

equation. The following figure summarizes these results.

8.3.4 Repeated Real Eigenvalues

General Solution

When λ1 = λ2 ≡ λ and λi 6= 1 for all i, the second order difference equation (8.9) becomes

(1− λL)2yt = bxt + a. (8.15)
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Thus, the general solution to (8.15) is given by

yt =
1

(1− λL)2
bxt +

a

(1− λL)2
+ λtc1 + tλtc2, (8.16)

where c1 and c2 are constants. To see this note that

(1− λL)2(λtc1 + tλtc2) = 0.

Particular Solution

If we are interested in a bounded sequence {yt} mapped from a bounded sequence {xt}, then we

need to set both of the constants c1 and c2 to zero, and focus on the associated particular solution.

When λ1 = λ2 ≡ λ and |λ| < 1, we can show that

∞
∑

j=0

(λL)j+1 =
λL

1− λL
.

Applying the derivative trick from Example 1.1.29 gives

1

(1− λ1L)(1 − λ2L)
=

1

(1− λL)2
=

∞
∑

j=0

(j + 1)(λL)j .

Thus, in this case, the bounded solution to (8.9) is given by

yt =
a

(1− λL)2
+ b

∞
∑

j=0

(j + 1)λjxt−j .

If, on the other hand, |λ| > 1, we can show that

1

1− λL
=

−(λL)

1− (λL)−1
= −

∞
∑

j=0

(λL)−(j+1).

Applying the derivative trick yields

1

(1− λL)2
=

∞
∑

j=0

(j + 1)(λL)−(j+2).

Thus, in this case, the bounded solution to (8.9) is given by

yt =
a

(1− λL)2
+ b

∞
∑

j=0

(j + 1)(λ)−(j+2)xt+j+2.

8.4 Systems of Linear Difference Equations

8.4.1 Solution Technique with Real Eigenvalues

Consider the following k-dimensional system of equations:

zt+1 = Azt,
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with z ∈ Rk and A ∈ Rk×k. Let λ1, λ2, . . . , λk be the eigenvalues of A and let v1,v2, . . . ,vk ∈ Rk

be the corresponding eigenvectors. Then the projection matrix P = [v1,v2, . . . ,vk] and

AP = [Av1, Av2, . . . , Avk]

= [λ1v1, λ2v2, . . . , λkvk]

= [v1,v2, . . . ,vk]











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk











= P











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk











If P is invertible we can obtain:

P−1AP =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk











(8.17)

with λ1, λ2, . . . , λk be distinct. Now we want to solve:

zt+1 = Azt.

We can go through the following steps: First multiply the above equation by P−1 and use equation

(8.17) to obtain

P−1zt+1 = P−1Azt

=











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk











P−1zt.

Then, if we define Z = P−1z, we get the following decoupled system:

Zt+1 =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk











Zt,

which, expanded out, can be written as:











Z1,t+1

Z2,t+1
...

Zk,t+1











=











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λk





















Z1,t

Z2,t
...

Zk,t











. (8.18)
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The above form represents k separate difference equations that can be recursively solved to obtain

Z1,t+1 = λ1Z1,t = λ2
1Z1,t−1 = · · · = λt+1

1 Z1,0

Z2,t+1 = λ2Z2,t = λ2
2Z2,t−1 = · · · = λt+1

2 Z2,0

...

Zk,t+1 = λkZk,t = λ2
kZk,t−1 = · · · = λt+1

k Zk,0,

which, in matrix form, can be represented as











Z1,t+1

Z2,t+1
...

Zk,t+1











=











λt+1
1 0 · · · 0

0 λt+1
2 · · · 0

...
...

. . .
...

0 0 · · · λt+1
k





















Z1,0

Z2,0
...

Zk,0











. (8.19)

Moreover, since z ≡ PZ , the above system can be written as

P











Z1,t+1

Z2,t+1
...

Zk,t+1











= P











λt+1
1 0 · · · 0

0 λt+1
2 · · · 0

...
...

. . .
...

0 0 · · · λt+1
k











P−1P











Z1,0

Z2,0
...

Zk,0





















z1,t+1

z2,t+1
...

zk,t+1











= P











λt+1
1 0 · · · 0

0 λt+1
2 · · · 0

...
...

. . .
...

0 0 · · · λt+1
k











P−1











z1,0
z2,0

...

zk,0











.

If we define diag(λ1, . . . , λt) = D, we obtain

zt+1 = PDt+1P−1z0.

Alternatively we can use (8.19) to express the solution as











Z1,t+1

Z2,t+1
...

Zk,t+1











=











λt+1
1 c1

λt+1
2 c2

...

λt+1
k ck











,

which, if we multiply both sides of the above result by the projection matrix P , implies

zt+1 = [v1,v2, ...vk]











λt+1
1 c1

λt+1
2 c2

...

λt+1
k ck











= v1λ
t+1
1 c1 + v2λ

t+1
2 c2 + · · ·+ vkλ

t+1
k ck,

where vk ∈ Rk represents the kth eigenvector and the constant ck ≡ Zk,0 = P−1zk,0. The

following theorem summarizes this alternative approach.
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Theorem 8.4.1 (Difference Equation with Real Roots). Let A be a k × k matrix with k distinct

real eigenvalues λ1, . . . , λk and corresponding eigenvectors v1, . . . ,vk . The general solution of

the system of difference equations is

zt+1 = v1λ
t+1
1 c1 + v2λ

t+1
2 c2 + · · ·+ vkλ

t+1
k ck. (8.20)

Remark 8.4.1. Consider a system of two linear difference equations

xt+1 = axt + byt

yt+1 = cxt + dyt

or, in matrix form,

zt+1 ≡
[

xt+1

yt+1

]

=

[

a b
c d

] [

xt
yt

]

≡ Azt.

If b = c = 0 in these equations, they are uncoupled:

xt+1 = axt

yt+1 = dyt

and are easily solved as two separate one-dimensional problems:

xt = atx0 and yt = dty0.

When the equations are coupled (b 6= 0 or c 6= 0), the technique for solving the system is to find

a change of variables that decouples these equations. This is precisely the role of eigenvalues and

eigenvectors.

Example 8.4.1. Consider the following coupled system of difference equations

xt+1 = xt + 4yt

yt+1 = 0.5xt

or, in matrix form,

zt+1 ≡
[

xt+1

yt+1

]

=

[

1 4
0.5 0

] [

xt
yt

]

≡ Azt.

To find the eigenvalues solve the following

|A− λI| = (λ− 2)(λ + 1)
set
= 0,

which implies that λ1 = 2 and λ2 = −1 are the the eigenvalues to this system. To find the

corresponding eigenvectors, row-reduce A− 2I and A+ I to obtain the following equations

xt = 4yt

2xt = −4yt.

Normalizing yt to 1, we get the following basis vectors that form the relevant projection matrix

P =

[

4 −2
1 1

]

.
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Applying the change of variables Z = P−1z to the original difference equation, we obtain

Zt+1 = (P−1AP )Zt

=

[

λ1 0
0 λ2

]

Zt =

[

λt
1 0
0 λt

2

]

Z0

=

[

2t 0
0 (−1)t

] [

c1
c2

]

.

Thus, if we reapply the change of variables, we have

[

xt
yt

]

= c12
t

[

4
1

]

+ c2(−1)t
[

−2
1

]

,

which is the same equation that we would have arrived at had we applied Theorem 8.4.1.

8.4.2 Solution Technique with Complex Eigenvalues

Consider the following two-dimensional system of equations

zt+1 = Azt,

where A is a 2 × 2 matrix with complex eigenvalues α ± iβ. Applying the change of variables

z = PZ to the above difference equation yields

PZt+1 = APZt → Zt+1 = P−1APZt.

Since A is assumed to have complex eigenvalues, it has corresponding complex eigenvectors w1 =
u+ iv and w2 = u− iv. Thus, the projection matrix is given by

P = [w1,w2] = [u+ iv,u− iv] .

Moreover, using equation (8.17), it then follows that

P−1AP =

[

λ1 0
0 λ2

]

=

[

α+ iβ 0
0 α− iβ

]

.

Thus, the decoupled system becomes

Zt+1 ≡
[

Xt+1

Yt+1

]

=

[

α+ iβ 0
0 α− iβ

] [

Xt

Yt

]

.

Recursive substitution then yields

Xt = k1 (α+ iβ)t

Yt = k2 (α− iβ)t ,

where the constant K ≡ [k1, k2]
T = Z0 = P−1z0 could be real or complex. Using the fact that

zt = PZt, we can transforming transform the variables into their original form to obtain

zt =

[

xt
yt

]

= [u+ iv,u− iv]

[

k1 (α+ iβ)t

k2 (α− iβ)t

]

= k1 (α+ iβ)t (u+ iv) + k2 (α− iβ)t (u− iv) . (8.21)
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Notice that this solution takes the same form as (8.20), except with complex eigenvalues and eigen-

vectors replacing the real eigenvectors and eigenvalues.

Since the original problem contained only real numbers, we would like to find a solution that

contains only real numbers. Since every solution of the system is contained in equation (8.21) for

different choices of K = [k1, k2]
T , we want to know if we can find parameters k1 and k2 so that

equation (8.21) is real.

Notice that except for the constant factors, the first term in equation (8.21) is the complex

conjugate of the second. Since the sum of any complex number and its conjugate is the real number

2α, we want to choose the first constant, k1, to be any complex constant c1 + ic2 and let the second

constant, k2, be its conjugate pair, c1 − ic2. Then the first and second term in (8.21) turn out to be

complex conjugates and the sum of them will be a real solution given by

zt = (c1 + ic2) (α+ iβ)t (u+ iv) + (c1 − ic2) (α− iβ)t (u− iv)

= 2Re
{

(c1 + ic2) (α+ iβ)t (u+ iv)
}

. (8.22)

Applying Demoivre’s Formula (7.2), the above result can be written as

z = 2Re
{

(c1 + ic2) r
t [cos(tθ) + i sin(tθ)] (u+ iv)

}

= 2rtRe {[(c1 cos(tθ)− c2 sin(tθ)) + i (c2 cos(tθ) + c1 sin(tθ))] (u+ iv)}
= 2rt [(c1 cos(tθ)− c2 sin(tθ))u− (c2 cos(tθ) + c1 sin(tθ))v] ,

which is now a real solution.

Theorem 8.4.2. Let A be a 2 × 2 matrix with complex eigenvalues α∗ ± iβ∗ and corresponding

eigenvectors u∗ ± iv∗. Write eigenvalues in polar coordinates as r∗ [cos(θ∗) + i sin(θ∗)], where

r∗ =
√

(α∗)2 + (β∗)2 and (cos(θ∗), sin(θ∗)) =

(

α∗

r∗
,
β∗

r∗

)

.

Then the general solution of the difference equation zt+1 = Azt is

zt = (r∗)t [(c1 cos(tθ
∗)− c2 sin(tθ

∗))u∗ − (c2 cos(tθ
∗) + c1 sin(tθ

∗))v∗] .

Example 8.4.2. In Example 7.3.1, we found that the eigenvalues of

A =

[

1 1
−9 1

]

are 1± 3i with corresponding eigenvectors
[

1
0

]

± i

[

0
3

]

.

In polar coordinates, the eigenvalues become

1 + 3i =
√
10

(

1√
10

+ i
3√
10

)

=
√
10 (cos θ∗ + i sin θ∗) ,

where θ∗ = arccos
(

1√
10

)

≈ 71.565◦ or 1.249 radians. The general solution for the system

zt+1 ≡
[

xt+1

xt+1

]

=

[

1 1
−9 1

] [

xt
xt

]
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is given by

[

xt
yt

]

= (
√
10)t

[

(c1 cos(tθ
∗)− c2 sin(tθ

∗))

[

1
0

]

− (c2 cos(tθ
∗) + c1 sin(tθ

∗))

[

0
3

]]

= (
√
10)t

[

c1 cos(tθ
∗)− c2 sin(tθ

∗)
−3c2 cos(tθ

∗)− 3c1 sin(tθ
∗)

]

.

Remark 8.4.2. In higher dimensions, a given matrix can have both real and complex eigenvalues.

The solution of the corresponding system of difference equations is the obvious combination of the

solutions described in Equation 8.4.1 and Theorem 8.4.2.
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